A Superconducting Demonstrator Magnet for Magnetic Density Separation

Jaap Kosse, Chao Zhou, Marc Dhallé, Gonçalo Tomás, Sander Wessel, Erik Krooshoop, Peter Rem, Marcel ter Brake, Herman ten Kate
Magnetic Density Separation?

MDS: novel recycling technology

Ferrofluid + Vertical magnetic field gradient

Particles are separated by mass density

Flow laminator

Separation chamber

Separator blades

Post-processing

(plenum)

Saturated ferrofluid

Magnet

(nomagnetic) waste input
Basic MDS operating principle

At a height z_{eq}, the net force on a (non-ferromagnetic) waste particle is zero:

$$F_z + F_{buoyancy} + F_{mag}(z) = 0$$

Vertical field gradient desired that:

- varies with z
- is **constant** in horizontal directions

$$|H|(z) = H_0 \exp \left(-\frac{2\pi}{\lambda} z \right)$$ does the trick!
Why use superconductors in MDS?

Higher **field strength** \((H_0)\) & larger **periodicity** \((\lambda)\):

- Enhanced separation **resolution**
- Wider density **range**
- Deeper usable fluid bed
- More **dilute** ferrofluid (lower OPEX)

Project goal: demonstrator magnet

- 3 NbTi racetrack coils
- 5 T peak field
- \(\lambda = 60\) cm
- Targeted application: electronic waste
Contents

1) Coils
2) Cryostat
3) Cassette
4) Pillar structure

Minimize magnet-fluid distance
Mechanical strength
Thermal isolation
Single-walled cryostat

- **Direction of particle movement**
- **Fluid bed**

Sumitomo Cryogenics
GM Cryocooler. 1.5 W at 4.2 K

~1.1 m x 1.6 m
Single-walled cryostat
Magnet to be mounted on alu plate, plate can slide into cryostat

Room-temperature steel pillars support the top plate and help minimize top-plate thickness
Cassette to keep coils in place

High-strength aluminum alloy two-part cassette
- Shrink fits around coils upon cool-down
- Holes for RT pillars
Cassette bottom view

Connection to cooler

G11 warm-cold pillars

Pure aluminum busbars to reduce ΔT
Pillars optimized to balance buckling strength and heat in-leak

Euler’s buckling criterion

\[Q_c = \frac{\overline{k} \Delta T \pi}{L_2} \frac{1}{4} \left[\sqrt{\left(\frac{64 L^2 F}{C \pi^3 E} + D_i^4 \right)} - D_i^2 \right] \]

Fourier’s law

Solid rod: \(D_i = 0 \)

\[Q_c = 2 \overline{k} \Delta T \frac{L}{L_2} \sqrt{\left(\frac{F}{C \pi E} \right)} \]

SS: \(\frac{4.5}{\sqrt{195}} \approx 0.32 \), 77→4 K

G11: \(\frac{0.21}{\sqrt{20}} \approx 0.047 \), 293→4 K
Conclusions

MDS
Recycling technology, allows separation on non-magnetic materials based on mass density

NbTi
Demonstrator magnet under construction at University of Twente
Conduction-cooled
To be installed at Delft University

Design
Balances heat in-leak vs mechanical strength vs magnet-fluid distance
Thank you for your attention

This research is part of the program Innovative Magnetic Density Separation (IMDS), which is supported by NWO domain Applied and Engineering Sciences and partly funded by the Dutch Ministry of Economic Affairs.