

MT 26 International Conference on Magnet Technology

Vancouver, Canada | 2019

Wire and Cable Characterization of Nb₃Sn Conductor with High Heat Capacity

September 25, 2019

Emanuela Barzi, Fabrizio Berritta, Daniele Turrioni, Alexander Zlobin

US Magnet Development Program

Outline

- Reduce magnet training by increasing Nb₃Sn wire specific heat, i.e. replace some elements in wire with Gd₂O₃ /Cu tubes.
- Worked with industry to produce wire prototypes
- Help achieve goals with Finite Element models, including:
- 1. High-C_D tube location to optimize thermal efficiency
- 2. High-C_D tube location for drawability/ fabricability
- Study model sensitivity
- Compare with data
- Conclusions

Heat Capacity of Gd₂O₃

Specific heat of monoclinic Gd_2O_3 R. Hill et al 1983 J. Phys. C: Solid State Phys. 16 2871

X. Xu, A. V. Zlobin, E. Barzi – Fermilab; C. Buehler, M. Field, B. Sailer, M. Wanior, H. Miao – Bruker EST; C. Tarantini – Florida State University.

"Enhancing specific heat of Nb_3Sn conductors to improve stability and reduce training. "

Presented at CEC-ICMC 2019

Industry Produced Nb₃Sn Wires

Tin in Tube wire

Internally and on Corners

Hypertech

X. Xu, P. Li, A. Zlobin and X. Peng, *IEEE Trans. Appl. Supercond.*, vol. 23, Art. no. 4001605, 2018

Gd₂O₃/ Cu tubes

Externally

Bruker-OST, 2019

Restacked Rod Process wire

Minimum Quench Energy Measurements

Normalized transport current, I/I_c

ANSYS Thermal APDL Model

"Measurements and modelling of mechanical properties of Nb₃Sn strands, cables and coils", E. Barzi, et al., IEEE Trans. Appl. Supercond., vol. 29, no. 5, Art. no. 8401808, 2019.

Thermal Model Hypotheses

The initial temperature is 4.2 K and it is set as boundary temperature constraints:

- T(r,0) = 4.2 K
- T(r,t) = 4.2 K@boundary

Magnetic Field B=12T

An heat flux pulse of 200 µs is applied on the upper half arc (2D model) with unitary thickness.

Temperature/Field Dependent Material Properties

By obtaining $I_c(12 \text{ T}, 4.2 \text{ K})$ using parameterization and solving for T_c in $I_c(12 \text{ T}, T_c)$ the following critical temperatures:

Current ratio I/I _c @B=12 T	T _c
0.2	6.3 K
0.4	5.3 K
0.6	4.8 K
0.8	4.4 K

Sensitivity of MQE from model was calculated for thermal conductivity and heat capacity variations of Nb₃Sn, Cu, Gd₂O₃, stycast and bronze.

Model versus Experiment

MQE from model is lower than MQE from data since in the experiment 100% of the heat from the heater is assumed to go into the sample.

Is there an optimal thermal location for high-C_p elements?

Mechanical ANSYS Plastic Model

Nb-Sn-Cu Composite (pre-reaction)

High-C_p elements in the <u>outermost</u> row Actual Bruker-OST Wire

High-C_p elements in the <u>innermost</u> row Virtual design

Simulation of Wire Drawing Step

5% true strain

Von Mises Stress, 5% strain

Von Mises Stress, 5% strain

Work in progress, other material properties are being looked at to best represent drawing damage and confirm that for fabricability the location of the Gd_2O_3 tubes might be critical for success.

Conclusions

- The FEM thermal models accurately reproduce relative behavior in Minimum Quench Energy between regular and high- $C_{\rm p}$ wires.
- They were also very useful in contrasting the intuitive thought that for maximum efficiency the Gd₂O₃ tubes have to be external to the superconducting elements.
- This is good news since on the contrary there are indications that placing the Gd₂O₃ tubes externally hinders drawing.
- FEM structural models have been developed to aid in the design of architectures that can be realized without drawing failure. Further analyses are required to find the right criteria.
- More MQE measurements will be performed on both regular and high-C_p wires.

Thank you for your attention.