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Outline of Quench-back Management AC loss between superconducting strands
(Est) has two components: E« and Ead;

Identified contributing factors to fast discharge induced quench-
Y “w it backs at high current. Lty =E, 7 E,q
2 Di Oe' Computed AC loss (Est) within superconducting strands, coupling I 1 Bf f
. AC loss (Ecp), hysteresis loss (Eny), and penetration loss (Ep). tr

it 607 0 b
i i E?‘ Modeled eddy current in copper stabilizer using OPERA/ELECTRA. p = NN-Drc
e Compared computed starting time of quench-backs with measured ’ 2pe ,
ones to verify the computational method. E, ;= 1 Bir p? ¢ _
Proposed reduced dump resistances to eliminate quench-backs. 7121, & Ncos(6)
Tested reduced resistors by forced fast discharging. R,= ZNT“C;)S(Q)
Confirmed that reduced resistances eliminated quench-back effects. 7

Fig. 1 HB, Q1, Q2, Q3, and Dipole magnets installed on the SHMS platform. Jefferson Lab’s 11 GeV
Super High Momentum Spectrometer (SHMS) has been successfully commissioned.
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Etr (crossover AC loss) 83.6 82.0
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Eadj (adjacent AC loss)  1.32 1.33
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Eeddy (eddy current) 11.0 11.5
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el S . Table 1 Percentage contribution of total heat (50 mm long conductor, within first 2
| seconds, Rd = 0.075 Q [design value])
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Eddy current heating also makes significant

Fig. 2 Simulation model of current density in copper stabilizer for Q3 during fast discharge from . . 0 Fig. 3 Starting time of quench-backs versus fast discharge current. The Fig. 4 Computed decay of Dipole and computed critical currents versus time. The
3500A for the first 2 seconds after the start of the discharge. The upper right image shows a zoomed- contribution (>=H /0 ) . computed starting time is based on RRR (stabilizer) = 120 and rso cu = 45. solid line with open circles represents the natural current decay of Dipole when
in section of the current density distribution across a section of the copper stabilizer. The range of the long vertical dashed line represents the computed data fast discharged from 3450 A with a 0.025 Q dump resistor.

points with rsol_cu = 35 (lower) and 55 (upper).

Measured Voltage Decay Curves Across Layers within One Coil for Q3 and Dipole Magnets

Q3 (Imax = 3500 A, Rd = 0.075 Q) (b) Q3 (Imax= 3500 A, Rd = 0.0075 Q) (a) Dipole (Imax = 3308 A, Rd = 0.075 Q) (b) Dipole (Imax = 3450 A, Rd = 0.025 Q)
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Fig 5 Current decay, voltage decay across the dump resistor as well as voltage decays across four layers in one Fig. 6 Current decay, voltage decay across the dump resistor as well as voltage decays across three layers in one
coil of the Q3. (a) Discharge current = 3500 A, Rd = 0.075 Q. Quench-back was detected. (b) Discharge coil of the Dipole (a) Discharge current = 3308 A, Rd = 0.075 €. Quench-back was detected. (b) Discharge
current = 3500 A, Rd = 0.0075 (2. No quench-back was observed. current = 3450 A, Rd = 0.025 €. No quench-back was observed.




