Analysis of Interdependent Multiple Field Pattern and Complement Dipole Field Quality

Seong Youb Shim and Kalliopi Dermati
GS1 Hemholtzzentrum für Schwerionenforschung

We present a mutual influence of the magnetic field and the corresponding analytical method. The two different geometric components have different eddy current profiles. And the corresponding magnetic fields disturb the operation field quality. The beam tube with the cooling pipe are the closest objects to the main beam region, and the beam tube has the stray field from these components needs to be considered in magnetic field quality.

The cooling pipe in an optimal position shows the opposite polarity with the same magnitude of one multiple field component corresponding to that of the beam tube.

The present geometric field analysis identifies the pattern of the multiple field and the cooling pipe position. The eddy current in the conductive geometry is able to complement the operation field quality.

SIS100 Dipole Magnet and Field Operation

- Mass Beam Dynamics Region, 30 mm ≤ r ≤ 30 mm.
- This region needs a high-quality dipole field.

The magnitude of the eddy current density

\[J_{\text{eddy}} = \frac{d}{dx} \left(\left\{ \frac{I}{\pi} \right\} \right) \]

Increase linearly on the horizontal z-axis.

The cooling pipe multiple fields:

- \(B_{\text{inst}} \) profile. The beam tube without the cooling pipe.
- \(B_{\text{inst}} \) profile. The beam tube with the cooling pipe. The field profile is more uniform compared to (a) in -20 mm ≤ r ≤ 20 mm.

The Comparison of the multiple coefficients \(k_n \)

- The \(n = 1 \) of the two components has the same polarity. And the applied field is a dipole magnetic field. Therefore, the same polarity is not the field quality disturbance but the magnitude variation. The magnet operation parameters can adjust the magnitudes.
- The main stray field \(n = 3 \) of the two components have opposite polarity. In this condition, the two eddy current conductors reduce the stray field each other.
- The \(n = 5 \) field is 0.257 times smaller than \(n = 3 \) field. Therefore, the effect of the \(n = 3 \) is bigger than that of the \(n = 5 \).

Conclusion

- This paper presented the magnetic field compensation of the eddy current in the two different geometric conductors.
- The comparative field analysis found the cooling pipe position of \(B_{\text{inst}} \) where produces the opposite polarity with the same magnitude of the \(n = 5 \) field compared to that of the beam tube.
- Consequently, the eddy current in the cooling pipe decreases the stray field of the beam tube and complements the total field quality. We found the positive effect of the eddy current.