

The Effects of Manufacturing Errors on Field Quality of a CCT Twin Aperture **Beam Orbit Corrector**

Model

Original

Case A:

Plane xoz

Case A:

Plane yoz

Plane xoz

-0.250

-0.250

Table IV. The effect of 50 µm concentricity error

Comparison of integral harmonics b_3 with B_{ω}

Unit

-3.323

-3.329

-0.250 | -3.325 |

Value

-0.082

-3.331 | -0.082 | -1.099

-0.082 | -1.096

-0.082 | -1.092

Shaoqing Wei^a Zhan Zhang^a, Quanling Peng^a, Lingling Gong^a, Chengtao Wang^a, Yingzhe Wang^a, Ershuai Kong^a, Zhen Zhang^a, YuLiang^b, Yuquan Chen^b, Meng Li^c, Chao Li^c, and Qingjin Xu^{a*}

^a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, People's Republic of China ^c Xi'an Superconducting Magnet Technologies Co.,Ltd., Xi'an, People's Republic of China

. Introduction

A set of twin aperture beam orbit correctors with Canted-Cosine-Theta (CCT) dipoles will be developed in China. Cooperating with CERN, twin aperture correctors are being fabricated as the prototypes before the series production. During the fabrication of the CCT coils, certain manufacturing errors including winding error, rotation error and concentricity error and were appeared, which affect the field harmonic components. This study analyzed the effects on field harmonic components by these manufacturing errors, and the production process of the prototype was introduced. Suggestions from the analysis results are provided the further series production of the 2.2-m orbit correctors.

Theory

- The position of the center of the powered cable for one of the two coils of the CCT is described by
 - $x = R \cos \theta$
 - $y = R \sin \theta$

$$z = \sum_{n_B} \left[\frac{R \sin(n_B \theta)}{n_B \tan \alpha_{n_B}} + \frac{\omega}{2\pi} \theta \right] + \sum_{n_A} \left[\frac{R \cos(n_A \theta)}{n_A \tan \alpha_{n_A}} + \frac{\omega}{2\pi} \theta \right]$$
(1)

where R is the radius of the cylinder, ϑ is the azimuthal angle, ω is the axial pitch length, n_A and n_B are the skew and normal multipoles (n_B =1 is the dipole component), α_{nA} , α_{nB} is the skew angles.

- For a normal dipole, the CCT coil winding path is described by
 - $x = R\cos\theta$
 - $y = R \sin \theta$

$$z = \sum \left[\frac{R \sin(\theta)}{\tan \alpha_{n_B}} + \frac{\omega}{2\pi} \theta \right]$$

For dipole, the harmonics can be calculated by

$$B_{\rho}(\rho, \varphi, z) = \sum_{n=0}^{\infty} a_n \cos(n\varphi) + \sum_{n=0}^{\infty} b_n \sin(n\varphi)$$

$$B_{\rho}(\rho, \varphi, z) = \sum_{n=0}^{\infty} a_n \sin(n\varphi) + \sum_{n=0}^{\infty} b_n \cos(n\varphi)$$

where, ρ is the radius, φ is the azimuthal angle, z is the coordinate in the longitudinal direction, B_o is magnetic flux densities in the radial direction, B_o is magnetic flux densities in the azimuthal direction, *n* is the order for field components.

3. Analysis

The parameters of CCT Corrector are shown in Table I.

Table I Parameters of CCT Corrector

Table I. Parameters of CCT Corrector						
Items	Values					
Iron yoke size (mm)	Φ614/ L500					
Diameter of aperture (mm)	167					
CCT skew angle β (center-center)	30°					
No. of turns per layer	55					
Slot size in former (mm)	$2\text{mm} \times 5\text{mm}$					
Spacing per turn (mm)	5.2					
Diameter of the slot (mm)	1 st layer:109/119 2 nd layer:123/133					
Reference radius (mm)	35					
Current (A)	422					
Central field without/with yoke (T)	1.86/2.64					
Peak field in coil/yoke (T)	2.90/1.89					
Integral field (T· m)	0.77					

 As the harmonics in twin CCT coils will affect each other greatly, the results of harmonics of single CCT coil are shown in Table II.

Integral harmonics, z=[-500 : 500]

Table II. The result of harmonics of single CCT coil

Harmonics @z = 0,

n	,		State of the state				
	a _n	b _n	a _n	b _n	Unit (a _n)	Unit (b _n)	
0	0	-4.36E-16	0	2.85E-14	0	5.59E-13	
1	1.879	-8.45E-16	509	-3.15E-14	10000	-6.19E-13	
2	6.49E-06	-5.07E-16	1.20E-04	-6.92E-15	2.36E-03	-1.36E-13	
3	-1.00E-03	-6.53E-16	-1.09E-04	3.14E-14	-2.14E-03	6.15E-13	
4	3.57E-06	9.34E-17	9.42E-07	5.14E-14	1.85E-05	1.01E-12	
5	-9.42E-06	6.55E-16	5.38E-07	4.18E-14	1.06E-05	8.20E-13	
6	-5.87E-07	-2.20E-16	1.43E-06	-5.32E-14	2.81E-05	-1.04E-12	
7	3.40E-06	1.21E-16	7.78E-07	7.70E-14	1.53E-05	1.51E-12	
8	8.08E-08	-5.15E-17	1.93E-06	-3.75E-14	3.79E-05	-7.37E-13	
9	-3.87E-07	-1.02E-15	1.04E-06	-5.58E-14	2.04E-05	-1.10E-12	

Fig.3 Integral harmonics of

single CCT coil

Fig.4 Harmonics b_n and a_n distribution in z direction

Analysis of manufacturing errors on harmonics

Longitudinal position, z (mm)

Longitudinal position, z (mm)

Fig.5 Winding error on harmonics. (a) Only outer layer has winding error (b) Both inner and outer layer

Table III. The harmonics comparison results of CCT correctors

Comparison of integral harmonics b_3 with B_{φ}								
Model	Al	PH	APV					
Model	Value	Unit	Value	Unit				
Case 1: Simple yoke	0.191	2.539	0.111	1.477				
Case 2: Yoke key cut out	0.389	5.176	0.432	5.746				
Case 3: Yoke key	-0.250	-3.323	-0.082	-1.087				

50 μm concentricity error

✓ Case A : 50 µm error at both ends of the rotating coil

✓ Case B : 50 µm error at one end of the rotating coil

4. Manufacture

Structure of prototype

Fig.8 Structure of CCT corrector prototype (a) Coil structure (b) Magnet structure

Manufacture process

Terminal connection

Coil Assembly

Magnet assembly

The whole-structure vacuum impregnation

Fig.9 Manufacture process of CCT corrector prototype

Cold test @4.2K

After 5 quench, the 1# coil reached 543A @ 4.2 K After 5 quench, the 2# coil reached 489A @ 4.2 K Design current *I* = 422A @1.9K (*I*=394A @1.9K)

Fig.10 Cold test (a) Load line (b)one coil (c)1# coil (d) 2# coil (c) load line

