

Applying MgB₂ Superconducting Magnet Technology for High Efficiency Klystrons in Particle Accelerator RF Systems A. Yamamoto^{1,2)}, S. Michizono¹⁾, W.Wuench²⁾, I. Syratchev²⁾, G. Mcmonagle²⁾, N. Catalan Lasheras²⁾, S. Stapnes²⁾, S. Calatroni²⁾,

H. Watanabe³⁾, H. Tanaka³⁾, S. Kido³⁾, T. Koga³⁾, Y. Koga³⁾, and K. Takeuchi³⁾: KEK ¹⁾, CERN ²⁾, and Hitachi ³⁾

Abstract:

- An MgB₂ superconducting magnet has been developed for highefficiency X-band (12 GHz) klystron and for electron beam focusing in particle accelerator RF systems, providing a solenoidal field of 0.8 T in a warm bore diameter of 0.25 m
- It has successfully demonstrated significant electric-power saving at an operation temperature of 20 K using a cryo-cooler with an AC-plug power consumption of 3 KW.

Summary:

- The MgB₂ superconducting solenoid for klystron beam focusing has been successfully demonstrated, $B_c = 0.8 \text{ T}$ at I = 57.1 A, and $T_{cs} = 29 \text{ K}$
- It has realized the stable and easy operation at 20 ~ 25 K. and demonstrated significant AC-plug power saving down to < 3 kW, with one order of magnitude lower to that of a Cu solenoid (20 kW).
- A large-scale application is anticipated in a future linear collider program. Compact Linear Collider (CLIC) proposed at CERN to realized significant energy saving and "Green Accelerators".

CLIC and Klystron based Linac

MgB2 Superc, Solenoid Parameter

5 1	al -380 is		
Parameters	Parameters		
Superconductor			
Material	MgB ₂ /Cu /Fe/Monel ®		
Strand Diameter, Length	0.67 mm, 5,600 m		
Insulation	Glass-braid		
Solenoid coil			
Inner Diameter, Length	0.34 m, 0.30 m		
Central field, @ Current, Coil-turns	0.8 T @ 57.1 A, 4946 tuens		
Stored energy	11.8 kJ		
Cold mass (coil/Cu-insert/Bobbin)	71 (14/25/32) kg		
Heat-treatment / Insulation	600 C x 6 h/ Epxy-Resin Impreg.		
Cryostat			
Warm ID, Iron-yoke OD, and Hight	0.25, 0.63, and 0.52 m		
Cryo-cooler (SHI-CH204)			
Cooling capacity (@ 20K / 65K)	6.7 / 13.5 @ 50 Hz		
AC plug-power	< 3 kW		
Cryo-cooler (SHI-CH204) Cooling capacity (@ 20K / 65K)	6.7 / 13.5 @ 50 Hz		

Initial Cooling in 7 days,

Excitation and discharge (< 4 min.)

Transition @ 29 K, B = 0.8 T (1 T in coil)

MgB2 SC magnet efficiency compared with Cu. NbTi. and HTS

Coil material	unit	Cu	NbTi	MgB ₂	HTS (GdBCO)
<u>Coil</u>					
Central field	Т	0.6	0.8	0.8	0.8
Current	Α	~ 2 x 300	57	57	57
Voltage	V	35	0	0	0
Power	KW	20	0	0	0
Cooling					
Cooling		WC	CC	CC	CC
Temp	K	300	4.5	20	65
Capacity	W	tbd		4	3
AC-power	kW	tbd	~ 6	<3	<~2
Total Power		>20	~ 6	<3	<~2

References:

- M. Aicheler et al., "The Compact Linear Collider (CLIC) Project Implementation Plan," doi:10.23731/ CYRM-2018-004.
- J. Nagamatsu, J. Akimitsu, et al. Nature 410 Mar. 2001, 63-64.
- H. Tanaka et al, : (SC), this conference, MT26, Wed-Af-Po3, 25-04.
- H. Watanabe et al.: (Magnet), this conference MT26, Tue-Af-Po2.23-05/