Improved performance of CSD-grown $Y_xGd_{1-x}Ba_2Cu_3O_7$-BaHfO$_3$ nanocomposite films on Ni5W substrate

P. Cayado1, H. Rijckaert2, T. Thersleff3, M. Erbe1, J. Hänsch1, I. Van Driessche2 and B. Holzapfel1

1Karlsruhe Institute of Technology (KIT), Institute for Technical Physics (ITEP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
2Ghent University, SCRIPTS, Dept. of Chemistry, Krijgslaan 281-S3, 9000 Ghent, Belgium
3Stockholm University, Department of Materials and Environmental Chemistry, Svante Arrhenius V. 16C, SE-106 91 Stockholm, Sweden.

Motivation

- Combination of pinning mechanisms
 - ΔI pinning: atomic disorder RE-RE' or RE-Ba (variation in mean free path)
 - ΔT_c pinning: small clusters vs. larger areas of different $REBCO$ (localized strain vs. local changes of T_c).

- Improved pinning performances under magnetic fields

![Graph](image1)

- $J_c(B)$ and $F_p(B)$ improvement for the optimized YGBCO+12%BHO films in comparison with pristine YBCO and Y$_{0.5}$Gd$_{0.5}$BCO films.

![Graph](image2)

Previous work

- Wider growth parameter windows.

- Strong $J_c(B)$ and $F_p(B)$ improvement for the optimized YGBCO+12%BHO films in comparison with pristine YBCO and Y$_{0.5}$Gd$_{0.5}$BCO films.

![Graph](image3)

Conclusions

- Epitaxial YGBCO+12%BaHfO$_3$ films were grown on both Ni5W and IBAD substrates. Better properties on Ni5W.
- Clear improvement of superconducting properties with Gd content x. Reduction of BaCeO$_3$ formation could explain this tendency.
- Transport measurements show an increase of J_c and F_p with x. Joint effect of BaHfO$_3$ particles and better crystalline properties.
- TEM images show particles homogeneously distributed and randomly oriented in the YGBCO matrix.

Film preparation

- CSD: TFA route + Acetylacetone

- Spin coating process

- Chemical precursor solution preparation

- Deposition

Properties on Ni5W

- Areal intensity of (00)YGBCO increases with x. BaCeO$_3$ formation seems to decrease with x.
- General tendency for both T_c and inductive F_p at 77 K to increase with x. Better properties on Ni5W.

![Graph](image4)

- Clear improvement in J_c and F_p due to BHO nanoparticles as well as Gd content x.
- Dense YGBCO+BaHfO$_3$ films of homogeneous thickness on top of the buffer layers. High density of randomly oriented and homogeneously distributed particles in the matrix.

Acknowledgements

P. Cayado et al., RSC Adv., 2018, 8, 42398-42404