Development of a radiation resistant magnetometer

M. Eibacha, G. Bollenb, K. Gulyuzb, H. Leibrocka, C. Mühlea, R. Ringleb, P. Rottländera

Motivation

Operation of accelerators requires knowledge of the magnetic field strength on the order of $\Delta B/B=10^{-4}$

Challenges

- NMR or Hall probes are used to monitor magnetic fields
- High radiation fields damage active components in the probe heads
- Lifetime is on the order of months at GSI beam intensities
- → FAIR and FRIB intensities require a radiation-hard solution with competitive stability and precision
- → Example: Fragment Separators (Super FRS)

Modern Rare-Isotope Facilities need robust Precision Magnetometers for the use in high-radiation environments

Approach

- Move all radiation-sensitive parts away from radiation
- Produce ion-trap based, radiation-hard magnetometer Ideal: Detection electronics can be placed behind shielding, no active electronics remains in high-radiation area
- Leverage FRIB ion trap expertise in high-precision mass measurements with ion traps

Adapt FRIB's miniature Penning Trap for FAIR

Facility for Rare Isotope Beams, East Lansing, Michigan, USA

[1] A. G. Marshall and C. L. Hendrickson, Int. J. Mass Spectrom. 215, 59 (2002).

[2] D. L. Lincoln, et. al., Int. J. Mass Spectrom. **379**, 1 (2015).

How to measure the Magnetic Field Strength with a Penning trap

- Motion is characterized by three eigenfrequencies: Axial $-v_{\tau}$ Magnetron $-v_{\perp}$ Modified Cyclotron – v_{+}
- Direct connection to free cyclotron frequency: $v_1 + v_2 \approx v_c = q/m \cdot B$

- An oscillating cloud of particles with known chargeto-mass ratio (q/m) in the trap induces an image current.
- The signal is processed in a shielded region to protect the electronics from radiation-damages.
- An FFT analysis of the time-dependent signal reveals the eigenfrequencies of the ion cloud and thereby the magnetic field strength B.

Proof of principle: LEBIT minitrap magnetometer²

Systematic studies

- Penning Trap was built and installed in a 7T solenoid
- Electrons emitted by a LaB₆ crystal produced H₃O⁺ ions in trap from residual gas
- Both, v_{\perp} and v_{c} were observed, $v_{c}(H_{3}O^{+})$ was continuously monitored while the magnetic field was changed using an external coil
- Multiple measurements averaged

Penning Trap electron emitter

0.028 FFT resonances of H₃O⁺

0.024 -

0.020 -

0.016 -

0.012 -

0.008 -

0.004

Outlook

- Build/Purchase Equipment for Test-Setup
- Move test setup to an existing Magnet $\rightarrow \Delta B/B=10^{-5}$ within reach as better precision has been demonstrated (with higher field/fewer ions):

- Operate in high radiation areas to observe possible degeneration of trap electrodes
- Ultimately install in beam line