Critical Temperature Prediction for a Superconductor: A Bayesian Neural Network Approach

Thanh Dung Le¹, Rita Noumeir², Huu Luong Quach¹, Ji Hyung Kim³, Jung Ho Kim¹, and Ho Min Kim³

¹. École de technologie supérieure, University of Quebec, Montreal, QC, Canada (thanh.dung.le@etsmtl.ca)
². Department of Electrical Engineering, Jeju National University, Jeju-si, S. Korea
³. Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, Australia

Background

Much research in recent years has focused on using empirical machine learning approaches to extract useful insights on the structure-property relationships of superconductor material. Notably, these approaches are bringing extreme benefits when superconductivity data often come from costly and arduously experimental work. However, this assessment cannot be based solely on an open black-box machine learning, which is not fully interpretable, because it is counter-intuitive to understand why the model may give an appropriate response to a set of input data for superconductivity characteristic analyses, e.g., critical temperature. The purpose of this study is to describe and examine an alternative approach for predicting the superconducting transition temperature **Tc** from SuperCon database obtained by Japan's National Institute for Materials Science. We address a generative machine-learning framework called Variational Bayesian Neural Network using superconductors chemical elements and formula to predict **Tc**.

Objectives

- **First**, to improve the interpretability, we adopt a variational inference to approximate the distribution in latent parameter space for the generative model. It statistically captures the mutual correlation of superconductor compounds and then, gives the estimation for the **Tc**.
- **Second**, a stochastic optimization algorithm, which embraces a statistical inference named Monte Carlo sampler, is utilized to optimally approximate the proposed inference model, ultimately determine and evaluate the predictive performance.

Model and Preliminaries

<table>
<thead>
<tr>
<th>Noise coefficients</th>
<th>Weight coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>(\omega)</td>
</tr>
</tbody>
</table>

Variational Inference Model

\[
p_{\theta}(w|x) = \frac{p(x|w)p(w)}{p(x)} = \frac{p_{\theta}(w|x)}{p_{\theta}(x)} = \int_{w} p_{\theta}(w|x) \, dw
\]

KL (q(\theta)||p_{\theta})

\[
- \mathcal{L}(x; \theta, \phi) + \log p(x) = - \mathbb{E}_{q(\theta)} \log \frac{q(\theta|x)}{p_{\theta}(\theta|x)}
\]

Optimization

\[
\hat{\theta} = \arg \max_{\theta} \mathcal{L}(x; \theta, \phi)
\]

Bayesian Neural Network Regression Model

\[
p(y|X, w) = \prod_{i=1}^{N} N(y_i|w^T x_i, \sigma^{-2})
\]

Evaluation and Results

Model Evaluation

- Root Mean Square Error (RMSE):
 \[
 RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2}
 \]

- R-squared (R²):
 \[
 R^2 = 1 - \frac{\sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}
 \]

- Log-likelihood:
 \[
 LL = \log p(y|x, D) = \log \int_{w} p(y|x, w)q(w)
 \]

Numerical Results

<table>
<thead>
<tr>
<th>ML Approaches</th>
<th>J^2</th>
<th>RMSE (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Forest</td>
<td>0.85</td>
<td>N/A</td>
</tr>
<tr>
<td>Random Forest & XGBoost</td>
<td>0.74</td>
<td>17.4</td>
</tr>
<tr>
<td>Support Vector Machine</td>
<td>0.96</td>
<td>N/A</td>
</tr>
<tr>
<td>Convolutional Neural Network</td>
<td>0.93</td>
<td>N/A</td>
</tr>
<tr>
<td>Attention Table Convolutional Neural Network</td>
<td>0.97</td>
<td>8.14</td>
</tr>
<tr>
<td>Variational Bayesian Neural Network</td>
<td>0.94</td>
<td>3.83</td>
</tr>
</tbody>
</table>

Conclusion

The presented Bayesian regression approach can also directly be applied to predict the critical temperature of a superconductor, as shown in Table 1. Our confidence scores R² have strong overall concordance with previous predictions (R² = 0.94). Besides, a significant improvement was obtained in the RMSE at 3.83 K. The result is a striking illustration of VBN performance compared with other techniques. Although there are not any results for log-likelihood from existing approaches, it is evident that the log-likelihood value at -2.75 will give a comparable estimation of the regression task for future researches. In short, to the knowledge of the authors, the generative approach for superconductors Tc prediction is the first of its kind. This finding is promising and should be investigated with other advanced predictive models.

Acknowledgement

The author (T. D. Le) acknowledges the financial support of the Canada First Research Excellence Fund (CFREF) program through IVADO, and the Doctoral Scholarship for International Student from Le Fonds de Recherche du Quebec Nature et technologies (FRQNT).