Influence of the shape of soft-iron yoke on trapped field performance of HTS bulk
K. Yokoyamaa and T. Okab,
a Ashikaga University, 268-1 Omae-cho, Ashikaga, Tochigi 326-8558, Japan
b Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ward, Tokyo, 135-8548 Japan
K-yokoyama@ashitech.ac.jp

1. Introduction

Background
- A REBCO bulk superconductor is able to generate a several-tesla-class magnetic field by cooling and excitation.
- To promote the industrial applications of bulk magnets going forward, improving the ease of magnetization as well as the trapped magnetic field are important problem.
- In our previous study, we investigated to improve the trapped magnetic field in the bulk magnet system by simple method in which the size of soft-iron yoke was increased [1].
 - A trapped field could be increased by enlarging the yoke.

Magnetic field exposure time was extended, and temperature rise was suppressed. = long-pulse method [2].

Purpose of this study
- The shape of soft-iron yoke is changed for the purpose of reducing the volume of soft-iron yoke. This leads to a decrease in overall weight of the bulk magnet system.
- The influence on trapped field performance is investigated by PFM experiment using the ring- and disk-shaped yokes.
- There is concern for a reduction of trapped field due to a decrease in the volume of soft-iron.

2. Experimental

Experimental method
- A single pulsed field was applied and flux density on the bulk surface was monitored. After the magnetization, trapped field distribution was measured on the vessel surface.
 - Applied field: $B_{app}=3.9, 4.6, 5.0, 5.4, 5.8, and 6.2$ T
 - Flux density was monitored on the bulk surface with a Hall sensor (BHT-921, F.W.BELL) (sampling rate: 100 μs).
 - A three-dimensional Hall sensor (HGT-3030, LakeShore) was scanned on the vessel at a 2-mm pitch.
 - A total magnetic flux was calculated using the measured flux distribution data.

3. Results and discussion

A. Comparison of trapped field distributions between ring-yoke and disk-yoke

B. Comparison of time responses of magnetic flux density between ring-yoke and disk-yoke

C. Comparison of the maximum flux density and total magnetic flux between ring-yoke and disk-yoke

4. Conclusions

- We investigated the influence of the shape of soft-iron yoke on the trapped field performance of HTS bulk activated by pulsed field magnetization (PFM).
- A 60-mm GdBCO bulk was magnetized using ring-shaped and disk-shaped yokes.
 - The amplitude of applied field at the center of bulk was approximately 20% lower than that at the peripheral part when using the ring-yoke. (cf. both values were equal when using the disk-yoke.)
 - Maximum flux density B_{max}: The B_{max} of ring-yoke was lower than that of disk-yoke at all temperatures and applied fields.
 - Total magnetic flux Φ: Although the Φ value of ring-yoke was lower than that of disk-yoke at low temperature, both values are almost equal at high temperature.
 - These results provide the possibility of reducing the weight of the entire system while maintaining the high trapped field by decreasing the volume of soft-iron yoke.