INTRODUCTION

High Temperature Superconducting Induction/Synchronous Motor (HTS-ISM)

For next generation transportation equipment, e.g., train, bus, etc.

Structure

HTS-ISM has the same structure as squirrel-cage induction motor, but its rotor bars and end rings are replaced with high temperature superconducting (HTS) tapes.

Advantages

- High efficiency
- High torque density
- Coexistence of synchronous as well as slip rotation mode and so on.

50 kW FULLY HTS-ISM

Fully HTS-ISM

In order to improve the efficiency, stator windings are also fabricated by HTS tapes.

Fabricated 50 kW class fully HTS-ISM

We fabricated the 50 kW class fully HTS-ISM prototype.

AC loss of HTS stator windings

Power losses of HTS stator:
- AC loss of HTS windings
- Iron loss of the core

We evaluated AC losses of the HTS stator windings of the 50 kW fully HTS-ISM.

\[P_{A_{\text{loss}}} = 24.69 \times 10^{-5} \times f^{1.25} \mu \text{W} \]

RESULTS AND DISCUSSION

Load test

World first success of 39 kW output (at 1500 rpm) for fully superconducting motor

WLTC rotation test (multidisciplinary analysis)

WLTC is a newly adopted global harmonized driving test cycle for measuring fuel consumption and CO₂ emission.

WLTC test of 50 kW fully HTS-ISM

The test was successfully carried out with developed multidisciplinary analysis method.

Multidisciplinary analysis code

- Electric consumption (km/kWh) was calculated: 10.7 km/kWh
- Our drive system possesses high efficiency even if considering power consumption of cryocooler

(More study is necessary)

CONCLUSION

- We developed multidisciplinary analysis method which combines nonlinear voltage equations, equation of motion and thermal equivalent circuit for 50 kW class fully HTS-ISM.
- The maximum output reached 39 kW at 1500 rpm in load test (World first success).
- WLTC rotation test was carried out with developed multidisciplinary analysis method, and transient rotation and cooling characteristics were investigated.

ACKNOWLEDGMENT

This work was supported by Japan Science and Technology Agency under the program of Advanced Low Carbon Technology Research and Development Program (JST-ALCA) in Japan. We would like to thank Dr. Liangliang Wei and Mr. Hideichi Nakamura in Kyoto University (Japan) for their support.