

Sensitivity Analysis of Design Parameters in Transverse Flux Induction Heating Device

Paper ID: Tue-Af-Po2.25-03

Email: 2016020@hebut.edu.cn

Jiancheng Wu^{1, 2}, Shaopeng Wang^{1, 2}, Youhua Wang^{1, 2}, Chengcheng Liu^{1, 2*}

- 1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
- 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300130, China

>1. Introduction

- \clubsuit In the heating strip (e.g. steel) industry, the transverse flux induction heating (TFIH) For TFIH device, the average temperature $T_{\rm av}$, the relative non-uniformity $T_{\rm rel}$ and \nearrow 5.1. Heating results under the setting of initial design parameters technology is widely used. However, TFIH still have problems of uneven temperature heating efficiency η are very important which are regarded as the objectives. distribution on the strip surface at the outlet of heater and the heating efficiency is lower, $\bullet T_{\rm av}$ can be represented by which need to be solved.
- For solving above problems, the design parameters of TFIH device need to be optimized or where T[i] is the temperature value of the i sampling point and n is the sample number. changed. But when the non-significant design parameters are selected or the number of design $\bullet T_{\text{rel}}$ can be calculated by parameters is large, the optimization time will be very long.
- \clubsuit In this paper, Morris method of qualitative global sensitivity analysis (GSA) is used to rank $\bullet \eta$ is calculated by the sensitivity values between the four design parameters (the effective value of the exciting current $(I_{\rm E})$, the frequency of the exciting current $(f_{\rm E})$, the moving speed of the strip $(V_{\rm s})$, the where Q is the eddy current loss on the surface of the strip in time t, W is the input length of the coil (L_c) and the three objective functions (the relative non-uniformity (T_{rel}) , the excitation in the same time. average temperature (T_{av}) , the heating efficiency (η) of TFIH device. It provides an optimal >4. Morris method and its application in TFIH priority for the optimization or change of the design parameters of TFIH device, and thus the optimization time can be reduced greatly.

>2. Simulation model of TFIH device

Fig. 2. Double-layer hexagonal coil structure

Fig. 3. The nephogram of temperature distribution

kind of coil structure

>3. Objective functions of TFIH device

$$T_{\rm av} = \frac{\sum_{i=1}^{n} T[i]}{n} \tag{1}$$

$$T_{\text{rel}} = \frac{\sum_{i=1}^{n} \left| T[i] - T_{\text{av}} \right|}{nT_{\text{av}}} \times 100\%$$

$$\eta = \frac{Q}{W} \times 100\% \tag{3}$$

When there are y design parameters, the matrix A of $(y+1)\times y$ is constituted as the input matrix of the device or system researched by selecting y+1 group of vectors as

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix} \longrightarrow \begin{array}{c} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \mathbf{X}_3 \\ \mathbf{X}_y \end{array}$$

In the input matrix A, 0 means the initial value of each design parameter, and 1 means the values of each design parameter after change.

•Formula for calculating individual sensitivity (select the design parameters from two adjacent rows)

$$S_{x_{i+1}} = \frac{F(\mathbf{x}_{i+1}) - F(\mathbf{x}_i)}{\Delta x_{i+1}}$$
 (5)

•Formula for calculating combined sensitivity (the performance of the design parameters from two non-adjacent rows needs to be calculated)

$$S_{x_1 + \dots + x_k} = \frac{F(\mathbf{x}_k) - F(\mathbf{x}_0)}{|\mathbf{x}_k - \mathbf{x}_0|}$$

Different design parameters have different units, to make the sensitivity values of different design parameters are comparable, thus the sensitivity needs to be normalized

$$S = \frac{\Delta F(\mathbf{x})}{F(\mathbf{x})} \times \frac{1}{\delta}$$

According to the above principle, for TFIH device, Tab. 1 tabulates the required samples of four design parameters.

Tab. 1. The required samples of Morris method							
Dagian namanatana	Amplitude variations of parameter (δ)						
Design parameters	-20%	-10%	0	10%	20%		
$I_{\rm E}\left({\rm A}\right)$	800	900	1000	1100	1200		
$f_{\rm E}\left({\rm Hz}\right)$	400	450	500	550	600		
$V_{\rm s}$ (m/s)	0.08	0.09	0.1	0.11	0.12		
$L_{\rm c}$ (mm)	536	603	670	737	804		

>5. Computational results and conclusion

Based on the above calculation results, it can sitivities between design parameters and

>5.2. Results of sensitivities calculation and analysis

Individual sensitivities Tab. 3. The individual sensitivities between the four design parameters and T_{ϵ}

Design parameters	Amj	Amplitude variations of parameter (δ)				Individual sensitivity	
	-20%	-10%	0	10%	20%		conclusion 1:
$I_{ m E}$	1.9463	2.0591	0	2.1146	2.1146	2.0587	conclusion 1.
$f_{ m E}$	0.4852	0.4780	0	0.5055	0.7569	0.5564	$ I_{\rm E} > V_{\rm s} > f_{\rm E} > L_{\rm c} $
$V_{ m s}$	-1.2890	-1.1224	0	-0.8652	-0.9355	1.0530	
$L_{ m c}$	0.3085	0.1341	0	0.1648	0.0242	0.1579	
Design parameters	Am	plitude varia	ations	of paramete	er (δ)	our design Individual sensitivity	parameters and $T_{\rm rel}$
Design			ations			Individual	parameters and $T_{\rm rel}$
Design	Am	plitude varia	ations	of paramete	er (δ)	Individual	parameters and $T_{\rm rel}$

ensitivity		param
2.4117		$I_{ m E}$
0.6446	$ L_{\rm c} > I_{\rm E} > V_{\rm s} > f_{\rm E} $	$f_{ m E}$
0.9969		V_{s}
36.2512		L_0
design	parameters and η	Tab. 8. 7
ndividual ensitivity		Desi param
1.0368		
0.5116	$ V_{c} > I_{E} > I_{c} > f_{E} $	$f_{ m E}$

Combined sensitivities

						~			
8. The combined sensitivities between the four design parameters and η									
$L_{\rm c}$	-46.7668	-37.8799	0	35.2650	27.8269	36.9347		not strong.	
$V_{\rm s}$	-0.6007	-1.0601	0	-0.6360	-0.5830	0.7200		the design particle but the correlation	
$f_{ m E}$	-1.3604	-1.7314	0	-2.4382	-0.9364	1.6166	•	correlations	

u	0. 0. IIIC (G SCHSIC	1 1 1 1 1 1	ob occur		our design	parame
	Design parameters	Am	plitude varia	Combined sensitivity				
_		-20%	-10%	0	10%	20%		
-	I_{E}	0.8621	1.0345	0	1.6878	0.5626	1.0368	
	$f_{ m E}$	0.7623	0.9982	0	2.4138	-0.8439	1.2546	

<i>≻6.</i>	Rot	ford	010	COS
V.	Mej			CES

[1] D. S. Kim, J. Y. So, and D. K. Kim, "Study on heating performance improvement of practical induction heating rice cooker with magnetic flux concentrator," IEEE trans. Appl. Superc., vol 26, no. 4, article# 0604304, 2016.

[2] G. Lei, C. C. Liu, J. G. Zhu, and Y. G. Guo, "Techniques for multilevel design optimization of permanent magnet motors," IEEE trans. Energy Convers., vol 30, no. 4, pp. 1574–1584, 2015.

[3] Y. H. Wang, B. Li, L. X. Yin, J. C. Wu, S. P. Wu, and C. C. Liu, "Velocity-controlled particle swarm optimization (PSO) and its application to the optimization of transverse flux induction heating apparatus," *Energies.*, vol. 12, no. 3, pp. 1–12, 2019.