

An Electric-Circuit Model on the Inter-Tape Contact Resistance and Current Sharing for REBCO Cable and Magnet Applications

Aurora Cecilia Araujo Martinez^{1,2}, Qing Ji², Soren Prestemon², Xiaorong Wang², Georfrey Humberto Israel Maury Cuna¹

¹ Universidad de Guanajuato; ² Lawrence Berkeley National Laboratory

Email: araujoma2012@licifug.ugto.mx

Introduction

REBCO wire has multiple potential applications:

- CORC® wires for high-field accelerator magnets
- TSTC for fusion and power transmission
- REBCO pancake coils and layer wound coils
 - NHMFL 32 T user magnet
 - NMR and MRI

Challenges

- Difficult to protect REBCO magnets against quench
- Unavoidable critical current and n-value variations along the tape length

Contact resistance R_c in REBCO tapes plays a key role

- Low contact resistance allows current sharing
- High contact resistance causes excessive generation of Eddy currents

Driving questions

- Can we use a simple circuit model to provide important insight on the impact of R_c in REBCO cables?
- What is the optimal R_c for REBCO cables?
- What is the impact of having I_c and n-value variations on the performance of different REBCO cable configurations?

Validation of the model

We reproduced the results published by Takayasu et al. for a TSTC in self field at 77 K.

References

- [1] S. Hahn et al 2016, SST 29 105017. [2] M. Takayasu et al. 2016, IEEE TAS 26 15813467.4801304.
- [4] Y. Suetomi et al. 2016, SST 29 105002. [5] X. Wang et al. 2007, JAP 101 053904.
- [6] V. Pothavajhala et al. 2014, IEEE TAS 24 1-5. [12] L. Bromberg et al. 2012, TCEC 27 1001–1008 [7] J. J. Gannon et al. 2013, IEEE TAS 23 8002005— [13] S. Venuturumilli et al. 2017, IEEE TAS 27 1-4.
- [8] J. Kim et al. 2013, IEEE TAS 23 4801304-
- [3] D. C. van der Laan et al. 2019, SST 32 033001. [9] S. Hahn et al 2011, IEEE TAS 21 1592–1595. [10] X. Wang et al. 2015, IEEE TAS 25 1-5. [11] G. P. Willering et al. 2015, SST 28 035001.

[14] Yeekin Tsui et al 2016, SST 29 075005.

Model

Electric-circuit model based on Ngspice to study the impact of contact resistance on stacked-tape cable.

Model for Monte Carlo simulations to study the impact variations in I_c and n-value on the cable performance

Measurements in 2-stacked tapes

24.4

28.8

29.9

28.3

REBCO tape

Current

leads

Voltage taps

Impact of R_c in a 2-tape cable with local defect:

Before

24.2

31.0

28.9

30.7

29.7

Insulation with Kapton tape for high R_c

Solder Pb₄₀Sn₆₀ for low R_c

130.4

129.9

* Values that could not be measured after unsolder

I_c at 77 K, s.f. (A)

133.1

130.7

131.8 129.2

Insulation: high R_c V2 with the defect Current through 40 Insulation 35 $I_c = 212.5 \text{ A, n} = 9.5$ V2 with the defect

Impact of R_c on heat generation

Results

Optimal R_c with respect to terminal resistance

Tapes insulated

*tape 1= 100 A; tape 2=50 A. n = 30

Conclusions

- We developed a simple circuit model to help understand the impact of R_c and current sharing for REBCO cables.
- The model reproduces the published results on stacked-tape cable.
- Qualitative agreement with measurements in 2-tape stack cable soldered and with insulation was showed.
- Low contact resistance allows current to bypass defects and to reduce the power generation during the cable transition.
- Reducing R_c will make the cable performance (I_c and n-value) less affected by the variation of I_c in the tapes.

