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Superconducting SUPERBEND Magnet Permanent HARDBEND Magnet

Cryostat design
• The magnet cold-mass is zero-evaporation cryo-cooler-cooled by using bath

cooling in a liquid helium (LHe) vessel (re-condenser).
• The cryostat consists of the LHe vessel, a thermal shield, cold mass supports,

binary leads, cryo-coolers, pipes, instruments and a vacuum chamber.
• Two cryo-coolers are adopted due to relatively large heat load of about 93 W at

40-50 K induced by one pair of 1 kA binary leads.
• Single-stage cooler – the thermal shield and warm-ends of HTS leads.
• Two-stage 4.2 K cooler – second-stage cold-head is used to re-condense the

evaporated helium from the LHe vessel and cool the cold-ends of HTS leads.
• The LHe vessel is suspended in a vacuum chamber by eight, adjustable straps

made of epoxy fiberglass with high strength and low thermal conductivity.
• The estimated heat loads at 4.2 K and 45 K are respectively about 0.7 W and

150 W considering contingency.

Coil Design
• The coil is wound on a tapered dummy pole with

aluminum-bronze pole-tips.
• Mica sheets between the pole and the conductor

serve as a slip plane.
• Protective stainless steel shell is installed before

the coil is reacted in a dedicated heat-treatment
fixture.

• The holmium pole is installed before the coil is
vacuum impregnated with an epoxy resin.

Stress Analysis
• Maximum tensile stress below 110 MPa in the

high-field zone and below 56 MPa in low-field
zone.

• Compressive stress in below 20 MPa in the return
end and below 41 MPa in the straight section.

• Maximum stress at room temperature assembly
and after cool-down is below 25 MPa.

Support Structure Design
• Stainless steel race-track shape structure

with side reinforcement extensions for
bolting, removable top-lid for bridging
straight sections.

• Bend-and-shim technique is used for
assembling the magnet.

• The external shell is pre-bent to develop
gaps along the coil straight section.

• Smart shims are inflated inside gaps with
epoxy resin.

Stress Analysis
• At the nominal field the stress level in the

stainless steel enclosure is below 100 MPa
Maximum stress in the top-lid is below 220
MPa.

• The total tensile force on the set of side-
bolts is 17.5 kN.

Internally reinforced 
superconductor requirement
• High integrated magnetic forces

• 177 kN over a straight-section
• 81 kN over a return-end

• Rectangular bronze-route Nb3Sn superconductor
with a CuNbTi core reinforcing internally the wire
• High strength wire with typical yield stress of

about 260 MPa at 4.2 K
• Available data shows no degradation of a critical

current up to about 150 MPa of tensile stress
• Wire dimensions of 1.13x1.70 mm assumed for

performance evaluation
• Load-line operation point at 77.8% of critical current

and 3.3 K temperature margin

Magnetic design
• Warm-bore design with a C-shape return yoke.
• Low-carbon steel (1006) yoke with permendur

(50Fe-48Co-2V) pole interfaces.
• Two race-track coil made of a bronze route Nb3Sn

superconductor are wound on a holmium pole,
which acts as a flux concentrator.

• Design satisfied requirement of the dipole field
integral and provides the source point field of 4.6 T.

• Peak magnetic field in the conductor is 7.6 T at an
engineering current density of 328 A/mm2.

Magnet Concept
• Design was initiated as an alternative to superconducting

magnet design.
• In June 2019, the ALS-U project determined that a 3.2 T

dipole using permanent magnet technology was a preferred
solution.

• Concept uses an H-frame type of magnet structure.
• Split yoke structure is used to accommodate for installation

and magnet removal for maintenance or NEG coating
activation.

• Field adjustability is required in case of construction or
temperature variation errors and performance degradation
due to radiation.

• Design requires axial field shielding to minimize cross-talk
with neighboring magnets

• Transverse field shielding is required for general safety.

Mechanical Design Concept
• Upper and lower permanent magnet assemblies are bonded-

core constructions.
• Non-magnetic mounting-shoes are integral part of the pole

assemblies.
• Mounting-shoes provide tooling interfaces facilitating

installation and precise alignment inside carbon steel yokes
• Magnet yoke halves are aligned with each other with precision

dowel pins and secured together with side clamps
• The axial permanent-magnet blocks are bonded with a vertical

adjuster plates.
• Adjuster plates are part of the axial permanent-magnets

position control system

Magnetic Design
• Flux concentrating poles made of permendur alloy (50Fe-48Co-

2V) are surrounded by a high coercivity NdFeB permanent-
magnet blocks.

• Source point field requirement of 3.2 T results in a saturated
pole design.

• Additional axially-align permanent magnet blocks increase
achievable field by about 0.15 T.

• Vertical adjustor plates and position control system allow to
use axial PM blocks to compensate for field errors and
performance degradation.

• Composite iron-aluminum magnetic field clamps isolate the
adjacent quadrupoles from the high-field dipole.

• Low-carbon magnetic-steel yoke enhances the field by roughly
0.15 T and provides a mechanical stress management and a
magnetic shielding for safety during servicing of the ring.

Superbend Hardbend

Introduction
The ALS-U project will upgrade the Advance Light Source into a 4th generation light source. The
new Storage Ring will utilize a nine-bend-achromat (9BA) lattice design with on-axis injection from
a full energy Accumulator Ring in order to achieve a diffraction-limited performance for soft x-
rays. This will allow to increase the soft x-ray brightness by 2-3 orders of magnitude with respect
to current ALS beam-lines capabilities.
Two magnet concepts were investigated to maintain support for medium energy x-ray beam-lines:
• Superconducting Superbend (SBEND) magnet using a Nb3Sn conductor, providing the

magnetic field of 4.6 T at source points
• Hardbend (HBEND) magnet that uses permanent-magnet blocks made of a NdFeB material,

providing 3.2 T field at source points

Summary
Superbend magnet concept was developed during a conceptual design phase of the ALS-U project.
The design study demonstrated a feasibility of reaching 4.6 T source point field requirement. The
requirement can be met by using a combination of permendur alloy for the pole interfaces, holmium
poles and Nb3Sn coils. The internally reinforced, high-strength superconducting wire and a compact,
rigid support structure allow to minimize the coil stress and deformation. The compact, warm-bore
cryo-stat design provides sufficient cooling contingency for a relatively large heat-load from the
current leads.
Hardbend magnet concept, which is based on a permanent-magnet technology, was selected by the
ALS-U project to be used in the high-field magnet arc-sector of the new Storage Ring. It is currently at a
preliminary design phase. Accelerator physics compatibility, radiation requirement and engineering
feasibility have been established. The effort is directed towards establishing manufacturing, assembly
and installation methods and to proceed towards a prototype phase.

High Field Magnets in the ALS-U Storage Ring
• Nominal Storage Ring lattice designed as a 12-fold symmetric Nine-Bend-Archomat lattice
• In three arc sectors, two gradient dipole magnets are replaced with high-field dipoles
• Each high field dipole magnet is accompanied by two, thin, defocusing gradrupoles to

match the nominal arc sector optics
• High field magnet design is challenging due to:

• Extremely limited space
• High magnetic forces
• Magnetic cross-talk


