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Outline
Ø Introduction

Ø The Need For High Field
Ø What are High Fields for Accelerator Magnets?

Ø Status of the Nb3Sn High Field Accelerator Magnets
Ø High Luminosity Large Hadron Collider (HL-LHC)
Ø Future Circular Collider (FCC)
Ø The US-Magnet Development Program (US-MDP)

Ø Challenges for Nb3Sn High Field Accelerator Magnets 
Ø Mechanics to cope with huge Lorentz forces and to limit the coil stress/strain
Ø Increasing the critical current to reduce the cost of the magnets
Ø Efficient use of the critical current: Ic vs transversal loads; Conductor Stability; Training 
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Final focus quadrupoles to reduce the 
beam dimension at the interaction point

Introduction
The Need For High Fields 

Dipoles to bend the trajectory of the beam

 

x 

y 
z 

(a) 

 

x 

y 
z 

(b) 

E[GeV ]= 0.3 B[T ] ρ[m]
Beam energy

Dipole field

Bending radius

Ø Increase the 
collision/beam energy 
to possible generate 
new particles

Ø Increase the number 
of particles collisions 
(luminosity at the 
experiment) Bℓq ≈

1
σ *

Beam size at the 
collision point

Peak coil 
field

Quadrupole 
length
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HL-LHC 
~ 11 T (Nb3Sn)

Introduction
High Fields For Accelerator Magnets

FCC-HH
16 T (Nb3Sn)

SPPC
12 T à 24 T (IBS)

High Field 
Accelerator 

Magnets > ~ 10 T
LHC

8.33 TRHIC
3.5 T

Tevatron
4.3 T

HERA
4.7 T

Based on Nb-Ti
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Field in Accelerator Type 
Nb3Sn Dipoles 

vs
Field in the main Nb-Ti 
dipoles in accelerators 

(triangles)

Courtesy L. Bottura

Ø At present Nb3Sn is the only 
mature technology for HF 
Accelerator Magnets

Ø The rest of the presentation will 
be focused on Nb3Sn Magnets
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Status of the HL-LHC High Field Magnets
The 11 T Dipole

Ø CERN is manufacturing 11 T Nb3Sn dipoles (60 mm aperture) to be installed in the LHC by end 2020
Ø First Series cold mass successfully tested this summer

15.7 m

Dipole length 5.5 m

MBHB_002 Qualified for 
installation in the LHC

Courtesy F. Savary

Quench History of MBHB_002
(Courtesy G. Willering)
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Status of the HL-LHC High Field Magnets
Low-β quadrupole MQXF - Final focus Quadrupoles 

Ø In collaboration with US HL-LHC AUP, CERN is manufacturing 
quadrupole to be placed in the LHC interaction regions by end 2024  

• Target
• Gnom=132.6 T/m, 11.4 T Bpeak_nom

• Corresponds to 14 Tev in LHC
• Gult=143.2 T/m, 12.3 T Bpeak_ult

• Q1/Q3 (by AUP)
• 2 magnets MQXFA with 4.2 m

• Series: 20 magnets

• Q2a/Q2b (by CERN)
• 1 magnet MQXFB with 7.15 m

• Series: 10 magnets

• Different lengths, same design
• Identical short models

Courtesy of E. Todesco, P. Ferracin, G. Ambrosio
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Status of the FCC High Field Magnets

Ø CERN is presently pursuing 
several ambitious collaborations
aimed at developing 4 different 
50-mm-aperture twin-aperture 
dipole magnet designs with 
16.0/16.5 T bore/peak field

Cos-Theta Coil
(2018-2022)

S. Farinon, P. Fabbricatore
(INFN)

Block Coil
(2017-2021)

M. Durante, C. Lorin
(CEA)

Common Coils
(2018-2022)

F. Toral (CIEMAT)

CCT
(2016-2019)

S. Sanfilippo (PSI)
B. Auchmann (CERN)

Courtesy D. Tommasini

Courtesy A. Ballarino 

Ø CERN has launched a word-wide 
effort to increase the performance 
of state of the art Nb3Sn conductor
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Status of the US-MDP 15 T Dipole Demonstrator

60 mm aperture dipole magnet
4-layer graded coils based on RRP Wires

Outer Diameter cold mass < 610 mm

Courtesy of S. Zlobin

Ø A 1-m long 15 T dipole model has been developed, fabricated and first tested at 
Fermilab (June 2019)

Ø The magnet reached Bmax=14.1 T at 1.9 K and 4.5 K - extremely encouraging 
results!
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Challenges
Mechanics & Stress (and Strain)

Lorentz forces in the plane of a thin coil of radius Rin generating a 
dipole field B (thin shell approximation), referred to a coil quarter

Fy

Fx

Progression of Fx:
LHC MB(8.33T) ≈ 1.7 MN/m
LHC MBH(11T) ≈ 3.2 MN/m
FRESCA2(13T) ≈ 7.6 MN/m
FCC MB(16T) ≈ 8 MN/m
HE-LHC MB(20T) ≈ 10 MN/m

Ø Devise an appropriate support concepts for the coil 
(bladder-and-key, stress management, canted-cosinus-theta, …)

Ø Cope with increasing stress on the conductor
Ø Limit mechanical energy release (training)

Courtesy L. Bottura

𝐹" = −𝐹% ∝ 𝐵( 𝜎 ∝ 𝐽+𝐵
LHC

11T
QXF

FCC
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j

w

Dipole field generated by a current distribution with constant current density J over a sector 
of inner radius Rin, outer radius Rout, coil width w = Rout-Rin and opening angle j

J é

n ≈ 1…2 In the range of typical magnet 
designs considered n≈1.5

B (T) 16
J (A/mm2) 300 600
w (mm) 76 38
Acoil (mm2) 20,000 7000

Factor 2

Factor 3

R in

Challenges
Increase Jc to Reduce magnet costs 

(Courtesy of S. Balachandran, 
NHMFL-ASC)

(Courtesy of X. Chu, Fermilab)

Breakthroughs in 
Nb3Sn Wire R&D

𝐴-./0 ∝
1
𝐽2𝑤 ∝

1
𝐽

𝐴-./0 ∝ 𝑀-./0 ∝ 𝐶𝑂𝑆𝑇
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Challenges
Efficient Use of Jc – Training & Margin

Ø Limit  training 

Ø Increase the  ratio between the operational current density
and the conductor Jc (presently at ≈ 40 % for Nb3Sn at 1.9 K)

Training of MQXFS models (at 1.9 K – red markers) – Courtesy of P. Ferracin and H. Bajas
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Challenges
Efficient Use of Jc - Stability

Test at CERN of LARP TQS02C 
(90 mm bore), the grand-father 

of the MQXF quadrupole 
Quench Current vs Temperature

Ø Because of the self-field instability, the quench current at 1.9 K can be lower than that one at 4.3 K
Quench History of the MQXFS3 model (Courtesy of H. Bajas) 

Full marks represent quench currents at the nominal, slow ramp-rate: 
red 1.9 K, green 4.5 K à Quench current lower at 1.9 K

MQXFS3a MQXFS3b MQXFS3c

Ø The Self- Field stability has to be properly guaranteed
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* From Bordini, De Marzi – tomorrow Wed-Af-Or14-06.

Effect of the strain, induced by a transverse load, on 
18 strands Rutherford cables based: on  1 mm PIT 

(circle) and 1 mm RRP (triangles) wires*

11.6 T, 4.3 K

Challenges
Efficient Use of Jc – Transverse Loads and Jc 1/2

Ø The critical current Ic of Nb3Sn Rutherford cable is significantly affected by the 
transverse load applied on the cable

Ø Up to about 180 MPa (depending on the wire layout) 
the Ic reduction is driven by the reduction of the 
upper critical field Bc2 and it is mainly reversible

Ø Above about 180 MPa (depending on the wire 
layout) cracks starts to occur in the Nb3Sn

Ø make sure that no cracks occur in the superconductor
Ø take in to account the effect of strain on the critical current
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Challenges
Efficient Use of Jc – Transverse Loads and Jc 2/2

Ø The understanding of the transverse load effects on the Nb3Sn Jc and the 
handling of these loads have greatly contributed to the success of the      
11 T HL-LHC dipole

Ø Because of large transverse loads, several 11 T magnet models were limited in 
the dipole mid-plane where a critical current much lower 
than the expected short sample limit was reached

-5

0

5

10

15

20

8000 9000 10000 11000 12000

Vo
lta

ge
 (u

V)

Current (A)

Voltage on midplane segment 109 II-I1

4.5 K

1.9 K

4.5 K vs 1.9 K

Reversible transition measured in the 
mid-plane of a 11 T Dipole model

Courtesy of G. Willering

Ø To overcame this problem, a special attention was put in
Ø guaranteeing a very accurate precision in the coil dimensions 

(to prevent stress concentrations); 
Ø precisely controlling the collaring forces;
Ø minimizing the coils precompression.
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Conclusions

Ø High Magnetic Fields (>10 T)  are essential in accelerator magnets to contain the 
considerable costs of next generation hadron colliders

Ø The Nb3Sn technology, although complex, is mature for building high field 
accelerator magnets
Ø Thanks to the last 20 years of R&D many difficulties have been overcome and all the major 

challenges have been identified (in particular transverse load effects and conductor stability)

Ø In the framework of the HL-LHC project CERN and US HL-LHC AUP are manufacturing ~ 11 T 
Nb3Sn accelerator magnets that will be all installed in the LHC between 2020 and 2024

Ø We are now ready to develop next generation high field Nb3Sn accelerator 
magnets



Thank you for your attention


