

Special Session on Magnet Technology and Conductor for Future High-field Applications

High-Field Accelerator Magnets

Bernardo Bordini

Thanks to the many colleagues at CERN who provided relevant material for this presentation in particular: L. Bottura, A. Devred, G. De Rijk, D. Tommasini, A. Ballarino, F. Savary, E. Todesco, M. Bajko, and P. Ferracin

Outline

Introduction

- The Need For High Field
- What are High Fields for Accelerator Magnets?

> Status of the Nb₃Sn High Field Accelerator Magnets

- High Luminosity Large Hadron Collider (HL-LHC)
- Future Circular Collider (FCC)
- The US-Magnet Development Program (US-MDP)

> Challenges for Nb₃Sn High Field Accelerator Magnets

- Mechanics to cope with huge Lorentz forces and to limit the coil stress/strain
- Increasing the critical current to reduce the cost of the magnets
- Efficient use of the critical current: I_c vs transversal loads; Conductor Stability; Training

IntroductionThe Need For High Fields

Increase the collision/beam energy to possible generate new particles

Dipoles to bend the trajectory of the beam

y z x

 Increase the number of particles collisions (luminosity at the experiment) Final focus quadrupoles to reduce the beam dimension at the interaction point

Relative beam sizes around IP1 (Atlas) in collision

Introduction

High Fields For Accelerator Magnets

FCC-HH

16 T (Nb₃Sn)

- At present Nb₃Sn is the only mature technology for HF **Accelerator Magnets**
- The rest of the presentation will be focused on Nb₃Sn Magnets

Field in Accelerator Type Nb₃Sn Dipoles

Field in the main Nb-Ti **dipoles** in accelerators (triangles)

Courtesy L. Bottura

Status of the HL-LHC High Field Magnets

The 11 T Dipole

- ➤ CERN is manufacturing 11 T Nb₃Sn dipoles (60 mm aperture) to be installed in the LHC by end 2020
- First Series cold mass successfully tested this summer

MBHB_002 Qualified for installation in the LHC

Courtesy F. Savary

Status of the HL-LHC High Field Magnets

Low-B quadrupole MQXF - Final focus Quadrupoles

In collaboration with US HL-LHC AUP, CERN is manufacturing quadrupole to be placed in the LHC interaction regions by end 2024

- Target
 - G_{nom} =132.6 T/m, 11.4 T $B_{peak nom}$
 - Corresponds to 14 Tev in LHC
 - G_{ult}=143.2 T/m, 12.3 T B_{peak ult}
- Q1/Q3 (by AUP)
 - 2 magnets MQXFA with 4.2 m
 - Series: 20 magnets
- Q2a/Q2b (by CERN)
 - 1 magnet MQXFB with 7.15 m
 - Series: 10 magnets
- Different lengths, same design
 - Identical short models

Courtesy of E. Todesco, P. Ferracin, G. Ambrosio

Status of the FCC High Field Magnets

CERN is presently pursuing several ambitious collaborations aimed at developing 4 different 50-mm-aperture twin-aperture dipole magnet designs with 16.0/16.5 T bore/peak field

Courtesy D. Tommasini

S. Farinon, P. Fabbricatore (INFN)

CERN has launched a word-wide effort to increase the performance of state of the art Nb₃Sn conductor

Courtesy A. Ballarino

Status of the US-MDP 15 T Dipole Demonstrator

Magnet conductor limit for the wire J_c(12T,4.2K)~2.65 kA/mm²

- $B_{ap}=15.3T @ 4.5K$
- B_{ap}^{nr} =16.7T @1.9K

60 mm aperture dipole magnet 4-layer graded coils based on RRP Wires Outer Diameter cold mass < 610 mm

- A 1-m long 15 T dipole model has been developed, fabricated and first tested at Fermilab (June 2019)
- The magnet reached B_{max}=14.1 T at 1.9 K and 4.5 K extremely encouraging results!

Courtesy of S. Zlobin

Mechanics & Stress (and Strain)

Lorentz forces in the plane of a thin coil of radius R_{in} generating a dipole field B (thin shell approximation), referred to a coil quarter

D20

SSC

10

Bore field (T)

HERA

Tevatron

RHIC

MBH (11T)

FRESCA

$$F_x = -F_y \propto B^2$$

HE-LHC (Malta)

 $\sigma \propto J_e B$

- Devise an appropriate support concepts for the coil (bladder-and-key, stress management, canted-cosinus-theta, ...)
- Cope with increasing stress on the conductor
- Limit mechanical energy release (training)

100

10000

1000

100

Horizontal force (kN/m)

Increase J_c to Reduce magnet costs

Dipole field generated by a current distribution with constant current density J over a sector of inner radius R_{in} , outer radius R_{out} , coil width $w = R_{out}$ - R_{in} and opening angle ϕ

 $A_{coil} \propto M_{coil} \propto COST$

В	(T)	16	
J	(A/mm ²)	300	600
W	(mm)	76	38
A_{coil}	(mm²)	20,000	7000

Factor 2

Factor 3

Breakthroughs in Nb₃Sn Wire R&D

(Courtesy of S. Balachandran, NHMFL-ASC)

(Courtesy of X. Chu, Fermilab)

Efficient Use of J_c – Training & Margin

Training of MQXFS models (at 1.9 K – red markers) – Courtesy of P. Ferracin and H. Bajas

- Limit training
- ► Increase the ratio between the operational current density and the conductor J_c (presently at $\approx 40 \%$ for Nb₃Sn at 1.9 K)

Efficient Use of J_c - Stability

Because of the self-field instability, the quench current at 1.9 K can be lower than that one at 4.3 K

Test at CERN of LARP TQS02C (90 mm bore), the grand-father of the MQXF quadrupole **Quench Current vs Temperature** 13000 12800 12600 12400 Current, 12000 11800 11600 Quench - Stable Temp. Region 11400 Quench - Unstable Temp. Region ····· Trend line (Quench - Stable Temp. Region) 11200 - Trend line (Quench - Unstable Temp. Region) 11000 1.5

Quench History of the MQXFS3 model (Courtesy of H. Bajas) Full marks represent quench currents at the nominal, slow ramp-rate: red 1.9 K, green 4.5 K → Quench current lower at 1.9 K

Efficient Use of J_c – Transverse Loads and J_c 1/2

 \succ The critical current I_c of Nb₃Sn Rutherford cable is significantly affected by the

transverse load applied on the cable

 \triangleright Up to about 180 MPa (depending on the wire layout) the I_c reduction is driven by the reduction of the upper critical field B_{c2} and it is mainly reversible

Above about 180 MPa (depending on the wire layout) cracks starts to occur in the Nb₃Sn

Effect of the strain, induced by a transverse load, on 18 strands Rutherford cables based: on 1 mm PIT (circle) and 1 mm RRP (triangles) wires*

- make sure that no cracks occur in the superconductor
- take in to account the effect of strain on the critical current

* From Bordini, De Marzi – tomorrow Wed-Al-Or14-06.

Efficient Use of J_c – Transverse Loads and J_c 2/2

- ➤ The understanding of the transverse load effects on the Nb₃Sn J_c and the handling of these loads have greatly contributed to the success of the 11 T HL-LHC dipole
- Because of large transverse loads, several 11 T magnet models were limited in the dipole mid-plane where a critical current much lower
 Reversible transition measure

than the expected short sample limit was reached

> To overcame this problem, a **special attention** was put in

- guaranteeing a very accurate precision in the coil dimensions (to prevent stress concentrations);
- precisely controlling the collaring forces;
- > minimizing the coils precompression.

Reversible transition measured in the mid-plane of a 11 T Dipole model Courtesy of G. Willering

Conclusions

High Magnetic Fields (>10 T) are essential in accelerator magnets to contain the considerable costs of next generation hadron colliders

- ➤ The Nb₃Sn technology, although complex, is mature for building high field accelerator magnets
 - Thanks to the last **20 years** of **R&D** many difficulties have been overcome and all the **major challenges** have been **identified** (in particular transverse load effects and conductor stability)
 - ➤ In the framework of the HL-LHC project CERN and US HL-LHC AUP are manufacturing ~ 11 T Nb₃Sn accelerator magnets that will be all installed in the LHC between 2020 and 2024

We are now ready to develop next generation high field Nb₃Sn accelerator magnets

Thank you for your attention

