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> Status of the Nb;Sn High Field Accelerator Magnets
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» Future Circular Collider (FCC)
» The US-Magnet Development Program (US-MDP)

> Challenges for Nb;Sn High Field Accelerator Magnets
» Mechanics to cope with huge Lorentz forces and to limit the coil stress/strain

> Increasing the critical current to reduce the cost of the magnets
> Efficient use of the critical current: /. vs transversal loads; Conductor Stability; Training
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Introduction
The Need For High Fields

> Incr.e.ase the Dipoles to bend the trajectory of the beam -
collision/beam energy ol
. Beam energy Bending radius
to possub_le generate E[GeV]=0. ) o[m]
new particles Dipole field

Final focus quadrupoles to reduce the ‘ Z
beam dimension at the interaction point Y ! Aﬂ/tx jl

> |Increase the number
of particles collisions

Peak coil
(luminosity at the A 1
experiment) « =
Quadrupole Beam size at the
length collision point
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Introduction

High Fields For Accelerator Magnets
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Courtesy L. Bottura
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Status of the HL-LHC High Field Magnets
The 11 T Dipole
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> CERN is manufacturing 11 T Nbs;Sn dipoles (60 mm aperture) to be installed in the LHC by end 2020
> First Series cold mass successfully tested this summer

Quench History of MBHB 002 . .
(Courtesy G. Willering) " H|LU | ,
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Status of the HL-LHC High Field Magnets
Low- quadrupole MQXF - Final focus Quadrupoles

> In collaboration with US HL-LHC AUP, CERN is manufacturing
quadrupole to be placed in the LHC interaction regions by end 2024

- Target

Courtesy of E. Todesco, P. Ferracin, G. Ambrosio
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Status of the FCC High Field Magnets

) Block Coil

INFN CCT
(g1 (2017-2021) [ T (2016-2019)
> CERN is presently pursuing Cos-Theta Coil =

Common Coils

(2018-2022)
| (2018-2022)

several ambitious collaborations
aimed at developing 4 different
50-mm-aperture twin-aperture
dipole magnet designs with
16.0/16.5 T bore/peak field

M. Durante, C. Lorin
(CEA)

S. Sanfilippo (PSI)
B. Auchmann (CERN)

F. Toral (CIEMAT) PAUL SCHERRER INSTITUT

Courtesy D. Tommasini S. Farinon, P. Fabbricatore

(INFN)
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> CERN has launched a word-wide
effort to increase the performance
of state of the art Nb;Sn conductor

[ ssreo | ruieva Courtesy A. Ballarino
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Status of the US-MDP 15 T Dipole Demonstrator

S: o U.S. MAGNET
100% SSL 87% SSL DEVELOPMENT
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> A1-mlong 15 T dipole model has been developed, fabricated and first tested at
Fermilab (June 2019)

» The magnet reached B,,,,=14.1 T at 1.9 K and 4.5 K - extremely encouraging
results!

Outer Diameter cold mass < 610 mm

Courtesy of S. Zlobin
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Challenges

Mechanics & Stress (and Strain) 5

Lorentz forces in the plane of a thin coil of radius R;, generating a © 200 FCC qb'/

dipole field B (thin shell approximation), referred to a coil quarter 02. A
£ 150 |
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% 50 —LHC ¢
&
10000 T 0
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£ .

2 kil " Progression of F,: Bore field (T)

3 oy > Devise an appropriate support concepts for the coil

21000

S HE”F:“ (bladder-and-key, stress management, canted-cosinus-theta, ...)

c Tevatron . . .

g Reic > Cope with increasing stress on the conductor

I n n n n n

> Limit mechanical energy release (training)
100
1 10 100
Bore field (T) Courtesy L. Bottura
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Challenges |
| J. to Red t ¢ Breakthroughs in
NErease Je to Reauee magnet costS Nb,sn wire R&D

Dipole field generated by a current distribution with constant current density J over a sector T
of inner radius Ry,, outer radius R, coil width w = R,+-Ri, and opening angle ¢ S :

1

42K
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w & 7 ACOll X ]n n=1..2 designs considered n=1.5 5
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coil (mm?) 20’000 7000 |Factor 3 (Courtesy of X. Chu, Fermilab)
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Challenges

Efficient Use of J. — Training & Marain

22

10 10 =
0 2 4 6 8 10 12 14 16 18 0 4 8 12 16 20 24 28 32 36 40 44 48 52
Test at FNAL Training quench # Test at CERN Training quench #

Training of MQXFS models (at 1.9 K — red markers) — Courtesy of P. Ferracin and H. Bajas
> Limit training

> Increase the ratio between the operational current density
and the conductor J, (presently at = 40 % for Nb;Sn at 1.9 K)
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Challenges
Efficient Use of J, - Stability

> Because of the self-field instability, the quench current at 1.9 K can be lower than that one at 4.3 K

Quench History of the MQXFS3 model (Courtesy of H. Bajas)
Full marks represent quench currents at the nominal, slow ramp-rate:

Test at CERN of LARP TQS02C red 1.9 K, green 4.5 K > Quench current lower at 1.9 K
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I Temper}re «l Ne Self ‘Field stability has to be properly guaranteed
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Challenges

Efficient Use of J. — Transverse Loads and J_ 1/2

» The critical current I, of Nb;Sn Rutherford cable is significantly affected by the
transverse load applied on the cable

Effect of the strain, induced by a transverse load, on
18 strands Rutherford cables based: on 1 mm PIT
(circle) and 1 mm RRP (triangles) wires*

> Up to about 180 MPa (depending on the wire layout)

the I. reduction is driven by the reduction of the oo} —
upper critical field By, and it is mainly reversible 5 | 11.6T, 43K
: %,
> Above about 180 MPa (depending on the wire P
layout) cracks starts to occur in the Nb;Sn 3 7 -

1 1 1 | 1 1 1 |
40 60 80 100 120 140 160 180 200
Applied Pressure [MPa]

> make sure that no cracks occur in the superconductor
> take in to account the effect of strain on the critical current

* From Bordini. De Marzi — tomorrow Wed-A{-Or14-06.
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Challenges

Efficient Use of J. — Transverse Loads and J, 2/2

> The understanding of the transverse load effects on the Nb;Sn J,. and the
handling of these loads have greatly contributed to the success of the
11 T HL-LHC dipole

> Because of large transverse loads, several 11 T magnet models were limited in
the dipole mid-plane where a critical current much lower  Reversible transition measured in the

mid-plane of a 11 T Dipole model

than the expected short sample limit was reached Courtesy of G. Willering

20 e 45K 4.5 Kvs 1.9 K

] ] ] u '
> To overcame this problem, a special attention was put in 15 | © 13k —4

» guaranteeing a very accurate precision in the coil dimensions
(to prevent stress concentrations);

» precisely controlling the collaring forces;

> minimizing the coils precompression. 8000 9000 10000 11000 1200(
Current (A)

Voltage (uV)

Bernardo Bordini High Field Accelerator Magnets MT 26 Conference, Vancouver



Conclusions

> High Magnetic Fields (>10 T) are essential in accelerator magnets to contain the
considerable costs of next generation hadron colliders

> The Nb,;Sn technology, although complex, is mature for building high field
accelerator magnets

» Thanks to the last 20 years of R&D many difficulties have been overcome and all the major
challenges have been identified (in particular transverse load effects and conductor stability)

» In the framework of the HL-LHC project CERN and US HL-LHC AUP are manufacturing~11 T
Nb;Sn accelerator magnets that will be all installed in the LHC between 2020 and 2024

> We are now ready to develop next generation high field Nb;Sn accelerator
magnets
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