

## Magnet Technology Development for High Field Accelerator Magnets

- High Field Accelerator Magnets Bernardo Bordini
- Development of Technology for high fields this talk

#### Ramesh Gupta

Brookhaven National Laboratory, Upton, NY 11973 USA September 24, 2019



## High Field Technology

- Once we approach 20 T, consideration for High Temperature Superconductors is must
- With that excitement comes the challenges
  - Quench protection
  - Large stresses (large strain in conductor)
  - Magnet designs and technologies
  - Field errors, particularly in HTS magnets
  - Production volume and cost in large scale production
- Tools to develop and test technologies

(Wed-Af-Or-13-02)



## Ongoing Technology Development

High field dipole technology is being developed at many places with many flavors (all are important at this point)

- CERN and other European institutions
- Lawrence Berkeley National Laboratory
- Fermilab
- Brookhaven National Lab
- Magnet Lab
- IHEP
- KEK and others

Warning: This presentation may be reflective of my own views and not of general community, but they should be ...

## BROOKHAVEN NATIONAL LABORATORY

## **Superconducting Magnet Division**

## Quench Protection in HTS

- A dozen of "React & Wind" Bi2212 cable coils were made, many tested in hybrid configuration with Nb<sub>3</sub>Sn coils
- Things were moving well till one test in 2003
- Coil damaged @4.3 kA. NO special quench protection, except PS shut off







Last coil after test (2003)

# BROOKHAVEN NATIONAL LABORATORY Superconducting

**Magnet Division** 

## Quench Protection in HTS Magnets

- Quench protection in HTS is a major challenge
- Large temperature margin (+/-), slow propagation
- Techniques being examined (all have challenges):
  - Quench heaters (large and variable thermal margin in magnets)
  - Detection of pre-quench voltages (noisy environment in hybrid)
  - Fast energy extraction (high voltage)
  - Cu plates, etc. quench back (how much they can help)
  - No-insulation (slow and variable charging, unbalanced forces)
- Some positive experience in quenching a short HTS/LTS hybrid dipole (next slides) thanks to advanced electronics
  - There has to be a reliable solution for a chain of long magnets for HTS magnets to become machine magnets





Superconducting **Magnet Division** 

## Hybrid Magnet Test - Round 2



- 12 mm wide YBCO double tape from ASC
- Two coils used ~300 meters of 4 mm equivalent

HTS coils integrated with Nb<sub>3</sub>Sn dipole and tested with advanced quench protection and energy extraction

## BROOKHAVEN NATIONAL LABORATORY

**Superconducting Magnet Division** 

## HTS/LTS Hybrid Dipole Test (Round 2, Year 2016)

# YBCO coils ramped up till they quenched with different background field from Nb<sub>3</sub>Sn coils



Several quenches.

Is it quench or thermal runaway?

- ➤ No training (compare to LTS)
- No damage and no degradation

**Encouraging** results

Quench threshold 0.2 Volts (like LTS)



**Magnet Division** 

## HTS Cable for Accelerator Magnets

#### Need cable for a variety of reasons:

- Inductance
- Current sharing (weak link issue)
- High current to operate in series with LTS coils
- Field Quality

#### **Several options:**

- Robel
- CORC
- Twisted Stacked Tape Cable (TSTC)



## Field Quality in HTS Magnets

## HTS magnets may never be able to provide the same field quality at low fields as NbTi magnets do

- What can be done to reduce these errors from the conductor/cable side and from the magnet design side?
- What can be done on the control side with correctors?
- What can be done on the machine side?
  - Need a dialogue with accelerator physicists to start thinking about how to live with the larger errors
  - It may be a similar situation when we moved from the room temperature magnets to the superconducting magnets



## Nb<sub>3</sub>Sn High Field Accelerator Magnet Technology

- Over 90% of the R&D Nb<sub>3</sub>Sn accelerator magnet (dipoles/quads) experience is been based on:
- "Wind & React" Technology
- "Cosine theta" design
- o Is W&R the best technology for industrial production?
  - > All coil parts must go through high reaction temperature
  - ➤ Accumulated strain on the conductor in long magnets during heat treatment due to different thermal expansion of parts
- $\circ$  Is COS( $\theta$ ) the best design for high field magnets?
  - > Stress/strain on the conductor (midplane and ends)
- ✓ Collider dipole designs that allow "React & Wind" technology and dipoles behaving more like solenoids



Superconducting Magnet Division\_

# Questions?



**Superconducting** Magnet Division\_

#### Extra Slides



#### BROOKHAVEN NATIONAL LABORATORY

Superconducting Magnet Division\_

# New R&D Approach Concept (rapid turn-around, low cost)

## Five Simple Steps/Components





- 1. Magnet (dipole) with a large open space
- 2. Coil for high field testing
- 3. Slide coil in the magnet
- 4. Coils become an integral part of the magnet
- 5. Magnet with new coil(s) ready for testing









# A Unique Situation for High Field Accelerator Magnet Technology

## Next high energy collider over two decades away

- The choice for target high field is wide open
  - $\square$  ~8 T is what we know how to do
  - $\square$  ~16 T is what some think we can do
  - ➤ Can we develop reliable accelerator magnet technology for higher fields?
- The choice for conductor is wide open
- The choice for magnet design is wide open

## An opportunity to take a fresh look





## Going Beyond NbTi

#### LHC luminosity upgrade

- A very important project to demonstrate viability of conductor other than NbTi in accelerator magnets
  - ➤ Based on Nb<sub>3</sub>Sn
  - > Based on cosine theta
  - ➤ Based on "wind & react"

#### Next step

- Reduce the number of quenches
- Develop technology for large scale dipole production
  - For example, will "react & wind", "racetrack coils" be more suitable for industrial production?

