Next-to-minimal dark matter

Felix Brümmer

1703.00370, with A. Bharucha and R. Ruffault 1804.02357, with A. Bharucha and N. Desai and work in progress

The summary to start with

What I want to show in this talk:

- Sub-TeV WIMPs are still alive...
- ... even the Original WIMPTM = the MSSM neutralino
- The LHC will further constrain them using long-lived particle searches
- More outlandish models give more outlandish signatures

What is a WIMP?

This talk's definition:

- A WIMP is a thermal relic.
- At large temperatures it is in thermal equilibrium. At temperatures T ≤ m its number density decreases exponentially due to scattering processes.

• WI = "weakly interacting". We take as part of the definition: DM abundance generated by electroweak processes.

WIMPs

First possibility: DM itself carries electroweak quantum numbers. E.g. generic MSSM neutralino:

$$\chi_1^{\mathbf{0}} = \alpha \, \widetilde{H}_u^{\mathbf{0}} + \beta \, \widetilde{H}_d^{\mathbf{0}} + \gamma \, \widetilde{B} + \delta \, \widetilde{W}^{\mathbf{0}}$$

This is largely ruled out below a TeV by direct detection \rightarrow see e.g. Krall&Reece '17 Some remaining options:

- mostly-bino χ_1^0 coannihilating with sleptons, or annihilating via Z- or Higgs funnel \rightarrow e.g. GAMBIT collaboration '18
- pseudo-Dirac higgsino, $m_{\chi^0_+}=$ 1.1 TeV ightarrow A. Delgado's talk
- pure wino, m = 2.5 TeV (but under pressure from indirect detection)
- SU(2) 5-plet fermion, $m_5 \approx 10 \text{ TeV}$
- SU(2) 7-plet scalar, $m_7 \approx 25$ TeV

SUSY

o . . .

WIMPs

Second possibility: DM χ does not interact much with the EW sector but remains in equilibrium by scattering with some particle ψ which does.

This will be the case for most of this talk's WIMPs. Specifically:

Annihilation of ψ efficiently depletes χ , even if $\psi - \chi$ mixing angle is \ll 1. The case of marginally efficient conversion processes is especially interesting \rightarrow D'Agnolo/Pappadopulo/Ruderman '17, Garny/Heisig/Lülf/Vogl '17

Next-to-minimal dark matter

For the purposes of this talk:

- DM χ is mostly a Majorana singlet
- Stabilized by \mathbb{Z}_2
- Coannihilation partner ψ is a \mathbb{Z}_2 -odd fermionic *n*-plet of SU(2)
- Sub-TeV particle content is minimal: there is only ψ and χ
- We don't consider SU(2) doublets (mostly ruled out by direct detection anyway) → extensive literature on well-tempered bino-higgsino and its non-SUSY version

Dark matter is a singlet fermion χ mixing with an *n*-plet fermion ψ ($n \ge 3$) through higher-dimensional operators.

States inducing the mixing live at scales \gtrsim TeV \Rightarrow irrelevant for LHC if carrying only EW charges.

A familiar example

Split SUSY with somewhat heavy higgsinos and $M_1 < M_2$. DM is mostly bino (singlet), mixing with wino (3-plet) through dimension-5 operator

$$\mathcal{L}_{\mathsf{mix}} = rac{ ilde{g}_{\mathsf{u}} ilde{g}_{\mathsf{d}}' + ilde{g}_{\mathsf{d}} ilde{g}_{\mathsf{u}}'}{\mu} \ \phi^{\dagger} au^{\mathsf{a}} \phi \ \widetilde{\mathsf{W}}^{\mathsf{a}} \, \widetilde{\mathsf{B}}$$

where $\phi = SM$ -like Higgs doublet.

Example of a "well-tempered neutralino" \rightarrow e.g. Arkani-Hamed/Delgado/Giudice '06 Pheno details: e.g. \rightarrow Rolbiecki/Sakurai '15, Nagata/Otono/Shirai '15

Features:

- Rather small direct detection cross section (small mixing angle in MSSM, no Z coupling to either bino or wino)
- Tiny indirect detection cross section (DM mostly singlet)

First case study: SU(2) triplets

\rightarrow See also talk by A. Filimonova

Particle content: one charged and two neutral fermions

Interactions of χ_1^0 with SM mainly through two operators:

$$\mathcal{L} = \frac{1}{2} \frac{\kappa}{\Lambda} \phi^{\dagger} \phi \chi \chi + \frac{\lambda}{\Lambda} \phi^{\dagger} \tau^{a} \phi \psi^{a} \chi + \text{h.c.}$$

 ϕ = SM Higgs; Λ = cutoff scale.

Wilson coefficients κ , λ both contribute to DM annihilation (\Rightarrow thermal relic density) and DM-nucleus scattering (\Rightarrow direct detection).

Trade λ for mixing angle $\theta = \frac{\lambda}{\Lambda} \frac{v^2}{\Delta m}$

First case study: SU(2) triplets

Any κ large enough to significantly influence relic density is ruled out by DD.

First case study: SU(2) triplets For $\kappa = 0$:

SU(2) triplets at (really) small mixing angle

How far away can the cutoff scale Λ be?

SU(2) triplets at (really) small mixing angle

At even smaller mixing: Relic density no longer determined by ψ annihilations freezing out but by $\chi \text{SM} \rightarrow \psi \text{SM}$ conversion rate dropping below Hubble rate

 \rightarrow D'Agnolo/Pappadopulo/Ruderman '17, Garny/Heisig/Lülf/Vogl '17

- "Effective number density" formalism used by standard codes no longer applicable: need to solve full Boltzmann equations, including conversion terms
- DM number density departs from equilibrium earlier \Rightarrow increased Ωh^2
- Can compensate (to some extent) by varying Δm
- "Conversion-driven freeze-out", "Coscattering"

Special case: Split SUSY at (really) large μ

- Coannhilation phase: $\Delta m \approx \text{const.}$
- Coscattering phase at large $\mu \gtrsim 10^7~{
 m GeV}$

Second case study: SU(2) quintuplets

Particle content: one doubly charged, one singly charged and two neutral fermions

$$\Delta m \{ \underbrace{\qquad \qquad} \begin{array}{c} \chi_2^0, \chi^{\frac{1}{2}}, \chi^{\frac{1}{2}} (\psi - \text{like}) \\ \chi_1^0 (\chi - \text{like}) \end{array}$$

- Doubly charged state ⇒ potentially characteristic signatures at LHC (long-lived)
- Mixing operator is now dimension 7:

$$\frac{\lambda}{\Lambda^3}\phi^{\dagger i}\phi_j\phi^{\dagger k}\phi_\ell \ C^{j\ell}_{A\,ik}\psi^A\chi + \text{h.c.}$$

 \Rightarrow mixing angles guaranteed to be small for cutoff scale $\Lambda \gtrsim$ TeV

Second case study: SU(2) quintuplets

Similar to triplet case. Mass parameters need some tuning. Wilson coefficient κ for dimension-5 operator $\frac{\kappa}{\Lambda}\phi^{\dagger}\phi\chi\chi$ already tightly constrained by direct detection.

Felix Brümmer

Well-tempered NMDM

First case study: SU(2) quintuplets For $\kappa = 0$:

On quadruplets

The quadruplet (isospin 3/2) case is more complicated because

- we now need a Dirac fermion $(\psi, \overline{\psi})$
- one doubly charged, two singly charged mass eigenstates
- three neutral mass eigenstates \Rightarrow two relevant neutral mixing angles
- spectrum depends on additional Wilson coefficients inducing non-universal mass splittings in the ψ sector
- proliferation of parameters

Result of our analysis: Qualitatively similar conclusions as for triplet/quintuplet case \rightarrow FB/Bharucha/Ruffault '17

Collider phenomenology: Displaced leptons

Zoom in on the quintuplet mass spectrum:

where

$$\delta m = \delta m^{(\text{tree})} + \delta m^{(1-\text{loop})}$$

Source for $\delta m^{(tree)}$ is dimension-7 operator:

$$\frac{1}{\Lambda^3} \underbrace{\mathcal{C}^{ABC}}_{\text{tot. symmetric}} \psi_A \psi_B (\phi^{\dagger} \phi \phi^{\dagger} \phi)_C \qquad \Rightarrow \qquad \left| \delta m^{(\text{tree})} \right| \lesssim \text{few 100 MeV}$$

Source for $\delta m^{1-\text{loop}}$ are electroweak loops:

Collider phenomenology: Displaced leptons

Zoom in on the quintuplet mass spectrum:

Numerically: $M - m \approx 15 - 50$ GeV (coannihilation), $\delta m \approx$ few 100 MeV. Typical $\chi^{\pm\pm}$ decay:

$$\chi^{\pm\pm} \rightarrow \chi^{\pm} (\rightarrow \chi_1^0 \ell^{\pm} \nu_{\ell}) \pi^{\pm}$$

- Decay into singly-charged χ^{\pm} and pion via off-shell *W* is only open 2-body mode. Pion too soft to be seen.
- Small mass splitting $\delta m \Rightarrow$ small phase space \Rightarrow macroscopic decay length \approx 0.5 mm
- Lepton from subsequent χ^{\pm} decay will be displaced.

Collider phenomenology: Displaced leptons

- CMS has published searches for displaced OS leptons at 8 TeV \rightarrow PRL 114 $_{(2015)\,6}$ and 13 TeV \rightarrow CMS-PAS-EXO-16-022
- 8 TeV analysis gives better constraints because of looser lepton p_T cuts (At 13 TeV, hard cuts to completely remove heavy flavour backgrounds)
- Exclusion (black curve) as a function of M and δm :

Collider phenomenology: Soft dileptons

Triplet model doesn't have long-lived states except at very small θ

Instead: Low-momentum OS lepton pairs

Search for compressed SUSY neutralino-chargino pair production \rightarrow CMS-PAS-SUS-16-048 allows to constrain triplet model. Exclusion depends on preferred χ_2 decay mode:

- green curve: CMS analysis, assuming $\chi_2 \psi^{\pm}$ production with $\chi_2 \rightarrow \chi_1 Z^*$
- blue curve: recast for $\psi^+\psi^-$ production if $\chi_2 \rightarrow \chi_1 h^*$ (no leptons)

Collider phenomenology: Disappearing tracks

For small mixing angles $\theta \leq 10^{-3}$: singly-charged ψ^+ decays into χ_2 (ψ -like) rather than directly into χ_1 (χ -like).

Mass degeneracy in *n*-plet sector \Rightarrow long-lived $\psi^+ \Rightarrow$ disappearing track

Conclusions

- Dark matter could be a mixed singlet *n*-plet with an EW-scale mass.
- Effective theory. Mixing induced by higher-dimensional operators.
- Simplest example: Well-tempered bino-wino in split SUSY. "Phase diagram" for neutralino dark matter.
- LUX already very constraining, Xenon1T even more. But at small mixing, DD constraints go away.
- Collider signatures:
 - Displaced leptons in quintuplet model
 - Soft dileptons in triplet model (weaker constraints)
 - Disappearing tracks in both (if mixing angle small)
 - A 500 GeV bino-like neutralino is not excluded if it coannihilates/coscatters with a wino-like chargino and neutralino. If it coscatters, the chargino will soon be found in disappearing track searches.