Next-to-minimal dark matter

Felix Brümmer

1703.00370, with A. Bharucha and R. Ruffault 1804.02357, with A. Bharucha and N. Desai and work in progress

The summary to start with

What I want to show in this talk:

- Sub-TeV WIMPs are still alive...
- \bullet ... even the Original WIMPTM = the MSSM neutralino
- The LHC will further constrain them using long-lived particle searches
- More outlandish models give more outlandish signatures

What is a WIMP?

This talk's definition:

- A WIMP is a thermal relic.
- At large temperatures it is in thermal equilibrium. At temperatures $T \leq m$ its number density decreases exponentially due to scattering processes.
- At temperatures $T \leq T_{\text{freeze-out}}$ these processes become inefficient and its number density becomes constant.

WI = "weakly interacting". We take as part of the definition: DM abundance generated by electroweak processes.

WIMPs

First possibility: DM *itself* carries electroweak quantum numbers. E.g. generic MSSM neutralino:

$$
\chi_1^0 = \alpha \,\widetilde{H}_u^0 + \beta \,\widetilde{H}_d^0 + \gamma \,\widetilde{B} + \delta \,\widetilde{W}^0
$$

This is largely ruled out below a TeV by direct detection \rightarrow see e.g. Krall&Reece '17 Some remaining options:

- mostly-bino χ_1^0 coannihilating with sleptons, or annihilating via Z - or Higgs funnel \rightarrow e.g. GAMBIT collaboration '18
- pseudo-Dirac higgsino, $m_{\chi_1^0} = 1.1$ TeV \rightarrow A. Delgado's talk
- pure wino, $m = 2.5$ TeV (but under pressure from indirect detection)
- SU(2) 5-plet fermion, $m_5 \approx 10$ TeV
- SU(2) 7-plet scalar, $m_7 \approx 25$ TeV

 \int **SUSY** \mathcal{L} MDM

 \mathcal{L} $\overline{}$

 \bullet . . .

WIMPs

Second possibility: DM χ does not interact much with the EW sector but remains in equilibrium by scattering with some particle ψ which does.

This will be the case for most of this talk's WIMPs. Specifically:

Annihilation of ψ efficiently depletes χ , even if $\psi - \chi$ mixing angle is $\ll 1$. The case of marginally efficient conversion processes is especially interesting \rightarrow D'Agnolo/Pappadopulo/Ruderman '17, Garny/Heisig/Lülf/Vogl '17

Next-to-minimal dark matter

For the purposes of this talk:

- DM χ is mostly a Majorana singlet
- Stabilized by \mathbb{Z}_2
- Coannihilation partner ψ is a \mathbb{Z}_2 -odd fermionic *n*-plet of SU(2)
- Sub-TeV particle content is minimal: there is only ψ and χ
- We don't consider SU(2) doublets (mostly ruled out by direct detection $\text{an}y \rightarrow \text{at}$ extensive literature on well-tempered bino-higgsino and its non-SUSY version

Dark matter is a singlet fermion χ mixing with an *n*-plet fermion ψ (*n* > 3) through higher-dimensional operators.

States inducing the mixing live at scales \geq TeV \Rightarrow irrelevant for LHC if carrying only EW charges.

A familiar example

Split SUSY with somewhat heavy higgsinos and $M_1 < M_2$. DM is mostly bino (singlet), mixing with wino (3-plet) through dimension-5 operator

$$
\mathcal{L}_{\mathsf{mix}} = \frac{\tilde{g}_{\mathsf{u}}\tilde{g}_{\mathsf{d}}^{\prime} + \tilde{g}_{\mathsf{d}}\tilde{g}_{\mathsf{u}}^{\prime}}{\mu} \; \phi^{\dagger} \tau^{\mathsf{a}}\phi \; \widetilde{\mathsf{W}}^{\mathsf{a}} \, \widetilde{\mathsf{B}}
$$

where $\phi = SM$ -like Higgs doublet.

Example of a "well-tempered neutralino" \rightarrow e.g. Arkani-Hamed/Delgado/Giudice '06 **Pheno details: e.g.** \rightarrow Rolbiecki/Sakurai '15, Nagata/Otono/Shirai '15

Features:

- Rather small direct detection cross section (small mixing angle in MSSM, no *Z* coupling to either bino or wino)
- Tiny indirect detection cross section (DM mostly singlet)

First case study: SU(2) triplets

 \rightarrow See also talk by A. Filimonova

Particle content: one charged and two neutral fermions

Interactions of χ_1^0 with SM mainly through two operators:

$$
\mathcal{L} = \frac{1}{2} \frac{\kappa}{\Lambda} \phi^{\dagger} \phi \chi \chi + \frac{\lambda}{\Lambda} \phi^{\dagger} \tau^a \phi \ \psi^a \chi + \text{h.c.}
$$

 ϕ = SM Higgs; Λ = cutoff scale. Wilson coefficients κ , λ both contribute to DM annihilation (\Rightarrow thermal relic density) and DM-nucleus scattering (\Rightarrow direct detection). Trade λ for mixing angle $\theta = \frac{\lambda}{\Lambda} \frac{v^2}{\Delta \kappa}$ *m*

First case study: SU(2) triplets

Any κ large enough to significantly influence relic density is ruled out by DD.

First case study: SU(2) triplets

For $\kappa = 0$:

SU(2) triplets at (really) small mixing angle

How far away can the cutoff scale Λ be?

SU(2) triplets at (really) small mixing angle

At even smaller mixing: Relic density no longer determined by ψ annihilations freezing out but by χ SM $\rightarrow \psi$ SM conversion rate dropping below Hubble rate

 \rightarrow D'Agnolo/Pappadopulo/Ruderman '17, Garny/Heisig/Lülf/Vogl '17

- "Effective number density" formalism used by standard codes no longer applicable: need to solve full Boltzmann equations, including conversion terms
- DM number density departs from equilibrium earlier \Rightarrow increased Ωh^2
- Can compensate (to some extent) by varying Δm
- "Conversion-driven freeze-out", "Coscattering"

Special case: Split SUSY at (really) large μ

- Coannhilation phase: $\Delta m \approx$ const.
- Coscattering phase at large $\mu \gtrsim 10^7$ GeV

Second case study: SU(2) quintuplets

Particle content: one doubly charged, one singly charged and two neutral fermions

- Doubly charged state \Rightarrow potentially characteristic signatures at LHC (long-lived)
- Mixing operator is now dimension 7:

$$
\frac{\lambda}{\Lambda^3} \phi^{\dagger i} \phi_j \phi^{\dagger k} \phi_\ell \ C_{Aik}^{j\ell} \psi^A \chi + \text{h.c.}
$$

 \Rightarrow mixing angles guaranteed to be small for cutoff scale $\Lambda \geq TeV$

Second case study: SU(2) quintuplets

Similar to triplet case. Mass parameters need some tuning. Wilson coefficient κ for dimension-5 operator $\frac{\kappa}{\Lambda}\phi^{\dagger}\phi\chi\chi$ already tightly constrained by direct detection.

Felix Brümmer North Communication of the Medicine of [Well-tempered NMDM](#page-0-0) 15 / 23 Medicine of the Medicine of th

First case study: SU(2) quintuplets For $\kappa = 0$:

On quadruplets

The quadruplet (isospin 3/2) case is more complicated because

- we now need a Dirac fermion (ψ, ψ)
- one doubly charged, two singly charged mass eigenstates
- three neutral mass eigenstates \Rightarrow two relevant neutral mixing angles
- spectrum depends on additional Wilson coefficients inducing non-universal mass splittings in the ψ sector
- **•** proliferation of parameters

Result of our analysis: Qualitatively similar conclusions as for $triplet/quintuplet case \rightarrow FB/Bharucha/Ruffault '17$

Collider phenomenology: Displaced leptons

Zoom in on the quintuplet mass spectrum:

where

$$
\delta m = \delta m^{\text{(tree)}} + \delta m^{\text{(1-loop)}}
$$

Source for $\delta m^{\text{(tree)}}$ is dimension-7 operator:

$$
\frac{1}{\Lambda^3} \underbrace{C^{ABC}}_{\text{tot. symmetric}} \psi_A \psi_B (\phi^\dagger \phi \phi^\dagger \phi)_C \qquad \Rightarrow \qquad \left| \delta m^{\text{(tree)}} \right| \lesssim \text{few 100 MeV}
$$

Source for δm^{1-loop} are electroweak loops:

$$
\begin{array}{ccc}\n & W, Z \\
& \nearrow \\
& \nearrow\n\end{array}\n\Rightarrow\n\begin{array}{ccc}\n & \delta m^{(\text{one-loop})} \approx 500 \text{ MeV}\n\end{array}
$$

Collider phenomenology: Displaced leptons

Zoom in on the quintuplet mass spectrum:

Numerically: $M - m \approx 15 - 50$ GeV (coannihilation), $\delta m \approx$ few 100 MeV. Typical $\chi^{\pm\pm}$ decay: $\chi^{\pm \pm} \rightarrow \chi^{\pm} (\rightarrow \chi_1^0 \ell^{\pm} \nu_\ell) \pi^{\pm}$

Decay into singly-charged
$$
\chi^{\pm}
$$
 and pion via off-shell *W* is only open 2-body mode. Pion too soft to be seen.

- Small mass splitting $\delta m \Rightarrow$ small phase space \Rightarrow macroscopic decay length ≈ 0.5 mm
- Lepton from subsequent χ^{\pm} decay will be displaced.

 \bullet

Collider phenomenology: Displaced leptons

- CMS has published searches for displaced OS leptons at 8 TeV \rightarrow PRL 114 (2015) 6 and 13 TeV \rightarrow CMS-PAS-EXO-16-022
- \bullet 8 TeV analysis gives better constraints because of looser lepton p_T cuts (At 13 TeV, hard cuts to completely remove heavy flavour backgrounds)
- Exclusion (black curve) as a function of *M* and *m*:

Collider phenomenology: Soft dileptons

Triplet model doesn't have long-lived states except at very small θ

Instead: Low-momentum OS lepton pairs

Search for compressed SUSY neutralino-chargino pair production \rightarrow cms-pas-sus-16-048 allows to constrain triplet model. Exclusion depends on preferred χ_2 decay mode:

- green curve: CMS analysis, assuming $\chi_2 \psi^\pm$ production with $\chi_2 \, \rightarrow \, \chi_1 Z^*$
- blue curve: recast for $\psi^+\psi^-$ production if $\chi_2 \to \chi_1 h^*$ (no leptons)

Collider phenomenology: Disappearing tracks

For small mixing angles $\theta \lesssim$ 10⁻³: singly-charged ψ^+ decays into χ_2 (ψ -like) rather than directly into χ_1 (χ -like).

Mass degeneracy in *n*-plet sector \Rightarrow long-lived $\psi^+ \Rightarrow$ disappearing track

Conclusions

- Dark matter could be a mixed singlet *n*-plet with an EW-scale mass.
- **Effective theory. Mixing induced by higher-dimensional operators.**
- Simplest example: Well-tempered bino-wino in split SUSY. "Phase diagram" for neutralino dark matter.
- LUX already very constraining, Xenon1T even more. But at small mixing, DD constraints go away.
- Collider signatures:
	- Displaced leptons in quintuplet model
	- Soft dileptons in triplet model (weaker constraints)
	- Disappearing tracks in both (if mixing angle small)
	- A 500 GeV bino-like neutralino is not excluded if it coannihilates/coscatters with a wino-like chargino and neutralino. If it coscatters, the chargino will soon be found in disappearing track searches.