

Effective Field Theory after a New-Physics Discovery

Matthias König Physik-Institut Universität Zürich *"From the Planck scale to the EW scale"* Granada, Jun 3, 2019

Under the assumption that **NP** is heavy, the scale separation between NP and SM require the use of **EFTs** to avoid large logarithms.

Under the assumption that **NP** is heavy, the scale separation between NP and SM require the use of **EFTs** to avoid large logarithms.

Under the assumption that **NP** is heavy, the scale separation between NP and SM require the use of **EFTs** to avoid large logarithms.

Under the assumption that **NP** is heavy, the scale separation between NP and SM require the use of **EFTs** to avoid large logarithms.

Under the assumption that **NP** is heavy, the scale separation between NP and SM require the use of **EFTs** to avoid large logarithms.

Under the assumption that **NP** is heavy, the scale separation between NP and SM require the use of **EFTs** to avoid large logarithms.

Integrate out high-scale physics \rightarrow Match onto EFT Lagrangian! *Example*: TeV-scale NP in low-energy observables

So what about the case of $q^2 \sim \Lambda^2$?

The large logarithms $\left(\frac{\alpha}{\pi} \ln \frac{q^2}{\Lambda^2}\right)$ are **not present** when q^2 is of the **hard scale**.

The large logarithms $\left(\frac{\alpha}{\pi} \ln \frac{q^2}{\Lambda^2}\right)$ are **not present** when q^2 is of the **hard scale**.

The large logarithms $\left(\frac{\alpha}{\pi} \ln \frac{q^2}{\Lambda^2}\right)$ are **not present** when q^2 is of the **hard scale**.

The large logarithms $\left(\frac{\alpha}{\pi} \ln \frac{q^2}{\Lambda^2}\right)$ are **not present** when q^2 is of the **hard scale**.

The large logarithms $\left(\frac{\alpha}{\pi} \ln \frac{q^2}{\Lambda^2}\right)$ are **not present** when q^2 is of the **hard scale**.

 $\stackrel{?}{\Rightarrow}$ High-energy processes computable at **fixed order**.

 \Rightarrow Whether $q^2 \sim m_f^2$ or $q^2 \sim M^2$: there are logs to be summed.

Assuming discovery of a resonance S, how to describe decays to SM particles with $m_{\rm SM}/m_S=\lambda\ll 1?$

Resonances

Assuming discovery of a resonance S, how to describe decays to SM particles with $m_{\rm SM}/m_S = \lambda \ll 1$? During the diphoton-delirium: "SMEFT+ S"

$$\mathcal{L}_{\text{eff}} = \frac{C_{\phi}}{\Lambda} S |D_{\mu}\phi|^2 + \frac{C_g}{\Lambda} S F^a_{\mu\nu} F^{a,\mu\nu} + \frac{C_u}{\Lambda} S \bar{Q}_L \tilde{\phi} u_R + \frac{C_d}{\Lambda} S \bar{Q}_L \phi d_R$$

Resonances

Assuming discovery of a resonance S, how to describe decays to SM particles with $m_{\rm SM}/m_S = \lambda \ll 1$? During the diphoton-delirium: "SMEFT+ S"

$$\mathcal{L}_{\text{eff}} = \frac{C_{\phi}}{\Lambda} S |D_{\mu}\phi|^2 + \frac{C_g}{\Lambda} S F^a_{\mu\nu} F^{a,\mu\nu} + \frac{C_u}{\Lambda} S \bar{Q}_L \tilde{\phi} u_R + \frac{C_d}{\Lambda} S \bar{Q}_L \phi d_R$$

Not in general valid, because now $q^2 \sim \Lambda_{\rm NP}!$

Assuming discovery of a resonance S, how to describe decays to SM particles with $m_{\rm SM}/m_S = \lambda \ll 1$? During the diphoton-delirium: "SMEFT+ S"

$$\mathcal{L}_{\text{eff}} = \frac{C_{\phi}}{\Lambda} S |D_{\mu}\phi|^2 + \frac{C_g}{\Lambda} S F^a_{\mu\nu} F^{a,\mu\nu} + \frac{C_u}{\Lambda} S \bar{Q}_L \tilde{\phi} u_R + \frac{C_d}{\Lambda} S \bar{Q}_L \phi d_R$$

Not in general valid, because now $q^2 \sim \Lambda_{\rm NP}!$

■ The **UV completion** might generate these operators **close** to m_S → Operators non-local for $m_{\rm NP} \sim m_S!$

Assuming discovery of a resonance S, how to describe decays to SM particles with $m_{\rm SM}/m_S = \lambda \ll 1$? During the diphoton-delirium: "SMEFT+ S"

$$\mathcal{L}_{\text{eff}} = \frac{C_{\phi}}{\Lambda} S |D_{\mu}\phi|^2 + \frac{C_g}{\Lambda} S F^a_{\mu\nu} F^{a,\mu\nu} + \frac{C_u}{\Lambda} S \bar{Q}_L \tilde{\phi} u_R + \frac{C_d}{\Lambda} S \bar{Q}_L \phi d_R$$

Not in general valid, because now $q^2 \sim \Lambda_{\rm NP}!$

- I The UV completion might generate these operators close to $m_S \rightarrow$ Operators non-local for $m_{\rm NP} \sim m_S!$
- Wilsonian EFT misses hard radiation of SM particles with large virtualities!

Assuming discovery of a resonance S, how to describe decays to SM particles with $m_{\rm SM}/m_S = \lambda \ll 1$? During the diphoton-delirium: "SMEFT+ S"

$$\mathcal{L}_{\text{eff}} = \frac{C_{\phi}}{\Lambda} S |D_{\mu}\phi|^2 + \frac{C_g}{\Lambda} S F^a_{\mu\nu} F^{a,\mu\nu} + \frac{C_u}{\Lambda} S \bar{Q}_L \tilde{\phi} u_R + \frac{C_d}{\Lambda} S \bar{Q}_L \phi d_R$$

Not in general valid, because now $q^2 \sim \Lambda_{\rm NP}!$

- I The UV completion might generate these operators close to $m_S \rightarrow$ Operators non-local for $m_{\rm NP} \sim m_S!$
- Wilsonian EFT misses hard radiation of SM particles with large virtualities!
- **3** The **power-counting** implied by this EFT does **not** reproduce the actual scaling of the amplitudes:

$$\mathcal{A}(S \to hh) = \mathcal{O}(\lambda^0), \ \mathcal{A}(S \to VV) = \mathcal{O}(\lambda), \ \mathcal{A}(S \to \bar{f}f) = \mathcal{O}(\lambda)$$

Idea: Integrate out fields with **large invariant mass** - either **heavy fields** or light fields with **large virtualities**!

Idea: Integrate out fields with **large invariant mass** - either **heavy fields** or light fields with **large virtualities**!

The low-energy theory has effective fields with $k^2 \sim 0$, but individual components can be large:

 $k^{\mu}=(\Lambda,0,0,-\Lambda)$ - "collinear mode"

Idea: Integrate out fields with **large invariant mass** - either **heavy fields** or light fields with **large virtualities**!

The low-energy theory has effective fields with $k^2 \sim 0$, but individual components can be large:

 $k^{\mu} = (\Lambda, 0, 0, -\Lambda)$ - "collinear mode" \rightarrow no suppression $\frac{\partial_{\mu}}{\Lambda}\phi_c$ for some components, unlike SMEFT!

Idea: Integrate out fields with **large invariant mass** - either **heavy fields** or light fields with **large virtualities**!

The low-energy theory has effective fields with $k^2 \sim 0$, but individual components can be large:

$$k^{\mu} = (\Lambda, 0, 0, -\Lambda)$$
 - "collinear mode"
 $k^{\mu} = O(\epsilon)$ - "soft mode"

Idea: Integrate out fields with **large invariant mass** - either **heavy fields** or light fields with **large virtualities**!

The low-energy theory has effective fields with $k^2 \sim 0$, but individual components can be large:

$$k^{\mu} = (\Lambda, 0, 0, -\Lambda)$$
 - "collinear mode"
 $k^{\mu} = O(\epsilon)$ - "soft mode"

Lots of (interesting) field-theory implications: non-local operators, $C \cdot \langle \mathcal{O} \rangle \rightarrow \int d\omega C(\omega) \cdot \langle \mathcal{O} \rangle(\omega)$, Wilson lines, power-counting \neq field mass-dimension, multiple effective fields per particle, ...

Idea: Integrate out fields with **large invariant mass** - either **heavy fields** or light fields with **large virtualities**!

The low-energy theory has effective fields with $k^2 \sim 0$, but individual components can be large:

$$k^{\mu} = (\Lambda, 0, 0, -\Lambda)$$
 - "collinear mode"
 $k^{\mu} = O(\epsilon)$ - "soft mode"

Lots of (interesting) field-theory implications: non-local operators, $C \cdot \langle \mathcal{O} \rangle \rightarrow \int d\omega C(\omega) \cdot \langle \mathcal{O} \rangle(\omega)$, Wilson lines, power-counting \neq field mass-dimension, multiple effective fields per particle, ...

Somewhat more technical but also more powerful than local EFTs!

Assume a new spin-0, gauge-singlet particle S and build a general framework based on **Soft-Collinear Effective Theory** (SCET) in the SMEFT-spirit:

Assume a new spin-0, gauge-singlet particle S and build a general framework based on **Soft-Collinear Effective Theory** (SCET) in the SMEFT-spirit:

Write out all possible operators:

$$\mathcal{L}_{\text{eff}} = \sum_{i} \mathcal{C}_{i} \otimes \left(S \cdot \mathcal{J}_{i}^{\text{SM}} \right)$$

/ SM

Assume a new spin-0, gauge-singlet particle S and build a general framework based on **Soft-Collinear Effective Theory** (SCET) in the SMEFT-spirit:

Write out all possible operators:

$$\mathcal{L}_{\text{eff}} = \sum_{i} \mathcal{C}_{i} \otimes \left(S \cdot \mathcal{J}_{i}^{\text{SM}} \right)$$

Write out all possible operators:

Assume a new spin-0, gauge-singlet particle S and build a general framework based on **Soft-Collinear Effective Theory** (SCET) in the SMEFT-spirit:

 $\mathcal{L}_{\mathrm{eff}} = \sum_i \mathcal{C}_i \otimes \left(S \cdot \mathcal{J}_i^{\mathrm{SM}}\right)$ This EFT separates the scales m_S and m_{SM} and the RG running of \mathcal{C}_i

This EFT separates the scales m_S and $m_{\rm SM}$ and the RG running of C_i resums the corresponding (double-) logs!

/ SM

Assume a new spin-0, gauge-singlet particle S and build a general framework based on **Soft-Collinear Effective Theory** (SCET) in the SMEFT-spirit:

Write out all possible operators:

$$\mathcal{L}_{\text{eff}} = \sum_{i} \mathcal{C}_{i} \otimes \left(S \cdot \mathcal{J}_{i}^{\text{SM}} \right)$$

This EFT separates the scales m_S and $m_{\rm SM}$ and the RG running of C_i resums the corresponding (double-) logs!

Based on:

Effective Field Theory after a New-Physics Discovery

Stefan Alte, MK, Matthias Neubert

JHEP 1808 (2018) 095, [arXiv:1806.01278]

Effective Theory for a Heavy Scalar Coupled to the SM via Vector-Like Quarks

Stefan Alte, MK, Matthias Neubert

[arXiv:1902.04593]

Even if the heavy quarks in these diagrams have $m_{\Psi} \gg m_S$, the "SMEFT+S" separates only m_{Ψ} from m_S , but not m_S from m_{SM} !

Even if the heavy quarks in these diagrams have $m_{\Psi} \gg m_S$, the "SMEFT+S" separates only m_{Ψ} from m_S , but not m_S from m_{SM} !

Whether Ψ is heavy or not, does not really matter* for the SCET:

Even if the heavy quarks in these diagrams have $m_{\Psi} \gg m_S$, the "SMEFT+S" separates only m_{Ψ} from m_S , but not m_S from m_{SM} !

Whether Ψ is heavy or not, does not really matter* for the SCET:

• If $m_{\Psi} \gg m_S$, then we integrate can out Ψ Wilson-style and obtain the "SMEFT+S". To properly separate the scales m_S and μ_{SM} , we **match** this EFT **onto the SCET**.

Even if the heavy quarks in these diagrams have $m_{\Psi} \gg m_S$, the "SMEFT+S" separates only m_{Ψ} from m_S , but not m_S from m_{SM} !

Whether Ψ is heavy or not, does not really matter^{*} for the SCET:

- If $m_{\Psi} \gg m_S$, then we integrate can out Ψ Wilson-style and obtain the "SMEFT+S". To properly separate the scales m_S and μ_{SM} , we **match** this EFT **onto the SCET**.
- If $m_{\Psi} \sim m_S$, then we integrate can out Ψ without taking the local limit, directly matching the UV theory onto the SCET.

$m_{\Psi} \gg m_S$	$\mathcal{L}_{ ext{SCET}_{ ext{BSM}}}$	$\mathcal{L}_{ ext{SMEFT}+S}$	$\mathcal{L}_{\mathrm{UV}}$
$m_{\Psi} \sim m_S \ \mu$	SM $\mathcal{L}_{ ext{SCET}_{ ext{BSM}}}$ n	$\mathcal{L}_{\mathrm{UV}}$ $\mathcal{L}_{\mathrm{UV}}$ m	$l_{\Psi} = \mu$

Operators responsible for he most relevant decays of the S: At $\mathcal{O}(\lambda^2)$: - See

$$O_{AA} = S g_{\mu\nu}^{\perp} \mathcal{A}_c^{\mu,a} \mathcal{A}_{\bar{c}}^{\nu,a} \qquad S \to \gamma\gamma$$
$$S \to WW$$

S \ into

Operators responsible for he most relevant decays of the S: At $\mathcal{O}(\lambda^2)$: - &

$$O_{AA} = S g_{\mu\nu}^{\perp} \mathcal{A}_c^{\mu,a} \mathcal{A}_{\bar{c}}^{\nu,a} \qquad \begin{array}{c} S \to \text{jets} \\ S \to \gamma\gamma \\ S \to WW \end{array}$$

 \sim

 \sim

.

Operators responsible for he most relevant decays of the S: At $\mathcal{O}(\lambda^2)$:

$$O_{AA} = S g_{\mu\nu}^{\perp} \mathcal{A}_c^{\mu,a} \mathcal{A}_{\bar{c}}^{\nu,a} \qquad S \to \text{jets} \\ S \to \gamma\gamma \\ S \to WW$$

 α

$$- \otimes \begin{pmatrix} S \to hh \\ S \to W_L W_L \\ S \to Z_L Z_L \end{pmatrix} \qquad S \to hh$$

Operators responsible for he most relevant decays of the S: At $\mathcal{O}(\lambda^2)$:

$$O_{AA} = S g^{\perp}_{\mu\nu} \mathcal{A}^{\mu,a}_c \mathcal{A}^{\nu,a}_{\bar{c}} \qquad egin{array}{c} S o {
m jets} \\ S o \gamma\gamma \\ S o WW \end{array}$$

$$O_{\phi\phi}(\mu) = S \left(\Phi_{n_1}^{\dagger} \Phi_{n_2} + \Phi_{n_2}^{\dagger} \Phi_{n_1} \right) \qquad \begin{array}{c} S \to \mathsf{hh} \\ S \to W_L W_L \\ S \to Z_L Z_L \end{array}$$

Details and full list of operators:

$$\sim \mathcal{M}_{\rm LO} \left\{ 1 + \frac{\alpha_s(\mu) C_F}{\pi} \ln^2 \frac{\mu^2}{m_q^2} \right\}$$

$$\sim \mathcal{M}_{\rm LO} \left\{ 1 + \frac{\alpha_s(\mu) C_F}{\pi} \ln^2 \frac{\mu^2}{m_q^2} \right\}$$

Resummation proceeds, as usual, via **renormalization** of the effective Lagrangian.

$$\overset{\times}{\longrightarrow} \quad \sim \quad \mathcal{M}_{\mathrm{LO}} \left\{ 1 + \frac{\alpha_s(\mu) C_F}{\pi} \ln^2 \frac{\mu^2}{m_q^2} \right\}$$

Resummation proceeds, as usual, via **renormalization** of the effective Lagrangian.

Because the logs are **quadratic**, their impact is **significant**!

$$\overset{\times}{\longrightarrow} \quad \sim \quad \mathcal{M}_{\mathrm{LO}} \left\{ 1 + \frac{\alpha_s(\mu) C_F}{\pi} \ln^2 \frac{\mu^2}{m_q^2} \right\}$$

Resummation proceeds, as usual, via **renormalization** of the effective Lagrangian.

Because the logs are **quadratic**, their impact is **significant**!

Important effects when predicting **decay rates** or putting **constraints** on models!

As an illustration, assume M = 2.5 TeV.

As an illustration, assume M = 2.5 TeV.

As an illustration, assume M = 2.5 TeV.

As an illustration, assume M = 2.5 TeV.

 $U_{BG}(\mu_0, M) = C(\mu_0)/C(M) | \Gamma_{\text{resum}}/\Gamma_{\text{fixed}} = |U_{BG}|^2$ Decay channel $U_{WW}(m_W, M) = 0.8 e^{0.23i}$ 0.67 $U_{BB}(m_W, M) = 1$ $U_{\phi\phi}(m_h, M) = 0.79 \, e^{0.08i}$ 0.62 $U_{t\bar{t}}(m_t, M) = 0.9 e^{0.31i}$ 0.81

As an illustration, assume M = 2.5 TeV.

 $U_{BG}(\mu_0, M) = C(\mu_0)/C(M) | \Gamma_{\text{resum}}/\Gamma_{\text{fixed}} = |U_{BG}|^2$ Decay channel $U_{WW}(m_W, M) = 0.8 e^{0.23i}$ 0.67 $U_{BB}(m_W, M) = 1$ $U_{\phi\phi}(m_h, M) = 0.79 \, e^{0.08i}$ 0.62 $U_{t\bar{t}}(m_t, M) = 0.9 e^{0.31i}$ 0.81 $U_{GG}(\mu_i, M) = 0.38 \, e^{0.98i}$ 0.15 $\mu_{i} = 100 \text{ GeV}$

As an illustration, assume M = 2.5 TeV.

 $U_{RG}(\mu_0, M) = C(\mu_0)/C(M) | \Gamma_{\text{resum}}/\Gamma_{\text{fixed}} = |U_{RG}|^2$ Decay channel $U_{WW}(m_W, M) = 0.8 e^{0.23i}$ 0.67 $U_{BB}(m_W, M) = 1$ $U_{\phi\phi}(m_h, M) = 0.79 \, e^{0.08i}$ 0.62 $U_{t\bar{t}}(m_t, M) = 0.9 e^{0.31i}$ 0.81 $U_{GG}(\mu_i, M) = 0.38 \, e^{0.98i}$ 0.15 $\mu_i = 100 \,\, \text{GeV}$

Resummation is important, rates always decreased!

The approach "SMEFT for low-energy, fixed order for collider" does not really hold.

- The approach "SMEFT for low-energy, fixed order for collider" does not really hold.
- Heavy new particles inject large energies into light final states!

- The approach "SMEFT for low-energy, fixed order for collider" does not really hold.
- Heavy new particles inject large energies into light final states!
- This leads to large logs $\alpha \log^2(m_{\rm NP}^2/m_{\rm SM}^2)$ that need to be resummed!

- The approach "SMEFT for low-energy, fixed order for collider" does not really hold.
- Heavy new particles inject large energies into light final states!
- This leads to large logs $\alpha \log^2(m_{\rm NP}^2/m_{\rm SM}^2)$ that need to be resummed!
- Resummation effects can impact constraints derived from collider searches.

- The approach "SMEFT for low-energy, fixed order for collider" does not really hold.
- Heavy new particles inject large energies into light final states!
- This leads to large logs $\alpha \log^2(m_{\rm NP}^2/m_{\rm SM}^2)$ that need to be resummed!
- Resummation effects can impact constraints derived from collider searches.
- SCET Operator basis, EFT amplitudes and anomalous dimensions are provided for your matching convenience.

- The approach "SMEFT for low-energy, fixed order for collider" does not really hold.
- Heavy new particles inject large energies into light final states!
- This leads to large logs $\alpha \log^2(m_{\rm NP}^2/m_{\rm SM}^2)$ that need to be resummed!
- Resummation effects can impact constraints derived from collider searches.
- SCET Operator basis, EFT amplitudes and anomalous dimensions are provided for your matching convenience.
- Lots of work to do: Operator bases and RGEs for other NP resonances (non-singlet, spin-1...) - see Bianka's talk!

- The approach "SMEFT for low-energy, fixed order for collider" does not really hold.
- Heavy new particles inject large energies into light final states!

Thank you for your attention!

- SCET Operator basis, EFT amplitudes and anomalous dimensions are provided for your matching convenience.
- Lots of work to do: Operator bases and RGEs for other NP resonances (non-singlet, spin-1...) - see Bianka's talk!

Bonus slides

Effective Field Theory after a New-Physics Discovery

A matching example

Matching example in a concrete UV theory:

Matching example in a concrete UV theory:

Supplement the SM with \boldsymbol{S} and a set of vector-like fermions:

[Alte, MK, Neubert (2019), [arXiv:1902.04593]]

Matching example in a concrete UV theory:

Supplement the SM with S and a set of vector-like fermions:

[Alte, MK, Neubert (2019), [arXiv:1902.04593]]

 $\begin{array}{l} \mbox{Compare with EFT amplitude} \rightarrow \ C_{Q_L \bar{d}_R \phi}(u,\mu) = \frac{V_Q^\dagger G}{u\,\xi-1}. \end{array}$ (all given in the paper)

Matching example in a concrete UV theory:

Supplement the SM with S and a set of vector-like fermions:

[Alte, MK, Neubert (2019), [arXiv:1902.04593]]

 $\label{eq:compare} \text{Compare with EFT amplitude} \ \rightarrow \ C_{Q_L \bar{d}_R \phi}(u,\mu) = \frac{V_Q^\dagger G}{u\,\xi-1}.$

Also, in the limit of $m_{\Psi} \gg m_S$: $C_{Q_L \bar{d}_R \phi}(u, \mu) = -V_Q^{\dagger} G$, which depends neither on m_S nor on $u \rightarrow$ local!

$$\cdots \checkmark A \longrightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

$$\cdots \checkmark A \qquad \rightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

Take-away message:

$$\cdots \checkmark A \qquad \rightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

Take-away message: Matching no work of magic!

$$\cdots \checkmark A \qquad \rightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

Take-away message: Matching no work of magic! Just compute amplitudes,

$$\cdots \checkmark A \qquad \rightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

Take-away message: Matching no work of magic! Just compute amplitudes, expand around $\lambda = m_{\rm SM}/m_S$ small,

$$\cdots \checkmark A \qquad \rightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

Take-away message:

Matching no work of magic! Just compute amplitudes, expand around $\lambda=m_{\rm SM}/m_S$ small, equate with the EFT amplitudes,

$$\cdots \checkmark A \qquad \rightarrow C_{GG}(m_S) = \frac{T_F}{\pi^2} \left[\left(\frac{4m_{\Psi}^2}{m_S^2} - 1 \right) \arcsin^2 \left(\frac{m_S}{2m_{\Psi}} \right) - 1 \right]$$

Wilson coefficient depends again on the momentum transfer $(Q^2 = m_S^2)$.

Take-away message:

Matching no work of magic! Just compute amplitudes, expand around $\lambda=m_{\rm SM}/m_S$ small, equate with the EFT amplitudes, use the RG to resum the large logs!

No. 28-"Three Log" Load of Sugar Pine at the Mill Pond.