Same-sign WW Scattering in the HEFT: Discoverability vs. EFT Validity

Paweł Kozów

 $\qquad \qquad \text{University of Granada, University of Warsaw supported by: National Science Centre, Poland, $2018/29/N/ST2/01153}$

- [1802.02366] J. Kalinowski, PK, S. Pokorski, J. Rosiek, M. Szleper and S. Tkaczyk
- [1905.03354] PK, L. Merlo, S. Pokorski, M. Szleper
- Our assumption: excess at $\geq 5\sigma$ in $W^+W^+ \to W^+W^+$ scattering at HL-LHC & no new resonances
- We assume EFT approach is then appropriate: $v << \Lambda$; the BSM deviations parametrized by a non-renormalizable \mathcal{L}_{eff} ; the E/Λ suppression
- The goal: learn about the couplings and Λ using the EFT approach to WW scattering
- ⇒ we particularly focus on the EFT description validity in the context of WW scattering at LHC

Two different EFTs: for the SM physical degrees of freedom have been constructed:

- 1. In the so-called SM Effective Field Theory (SMEFT) the $SU(2)_I \times SU(2)_R$ symmetry in the Higgs sector is realised linearly, with the Higgs field a $SU(2)_I \times SU(2)_R$ bi-doublet
- 2. In the so-called Higgs Effective Field Theory (HEFT) the $SU(2)_L \times SU(2)_R$ symmetry is realized non-linearly, on the three Goldstone bosons eaten up by the gauge fields:
 - the Higgs field h is a real scalar field, singlet under the $SU(2)_L \times SU(2)_R$

Two main issues concerning the EFT validity in WW scattering at LHC:

1 non-renormalizable operators \Rightarrow $iM \sim s^n$; lead to tree-level unitarity bound violation

$$\sqrt{s} > \sqrt{s^U}$$
 $(\sqrt{s} \equiv M_{WW})$

- $s^U = s^U(f_i)$
- in addition, the EFT description stops making sense for

$$\sqrt{s} > \Lambda$$

- Λ is unspecified even if we specify f_i of our EFT "model"
- since we assume that EFT is valid for $\sqrt{s} < \Lambda$, the following EFT region of validity emerges:

$$\sqrt{s} < \Lambda < \sqrt{s^U}$$

- Hence for each EFT "model" with specified f_i , one can consider different assumptions on Λ (according to the inequality);
- after Λ is fixed too, the EFT formulation should be valid for scattering energies $\sqrt{s} < \Lambda$

- Imagine we have the HL-LHC data and there is $\geq 5\sigma$ deviation from the SM
- and we want to fit simulated kinematic distributions to the data
- WW scattering is not directly accessible experimentally but one can use the reaction:however, in the full reaction at LHC

$$pp \rightarrow 2jets + WW \rightarrow 2jets + 2I + 2\nu_I$$

- since neutrinos in the final state, one has no access to M_{WW}
- one has to rely on kinematic variables that are observable
- in principle the variables have no correlation with M_{WW} and our fit distribution carries events that have $M_{WW} > \sqrt{s^U}$,
- hence we use "prediction" of the EFT Lagrangian that involves the region above the EFT validity

To solve the problem, one could introduce the EFT signal estimate as follows

$$\int_{2M_W}^{\Lambda} \frac{d\sigma}{dM_{WW}}|_{model} dM_{WW} + \int_{\Lambda}^{M_{max}} \frac{d\sigma}{dM_{WW}}|_{SM} dM_{WW}$$

- ⇒ It defines signal coming uniquely from the EFT in its range of validity
- 2 the second problem:
- the EFT fit can be considered sensible if and only if the tail in M_{WW} of the fitted distribution does not dominate the signal effect
- ullet only then one can sensibly extract information about the BSM coupling and Λ
- with a single estimate (above) we cannot answer this question
- ullet obviously the tail cannot be estimated using $\mathcal{L}_{\it eff}$

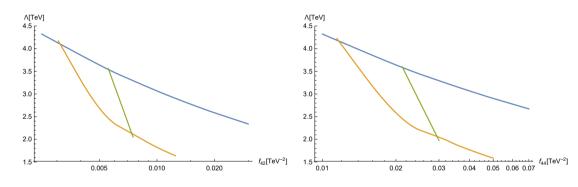
• to address this problem we introduce a physically plausible tail regularization of the EFT amplitude in which the amplitude above Λ is constant ($\equiv \sigma \sim 1/s$):

$$\int_{2M_W}^{\Lambda} \frac{d\sigma}{dM_{WW}}|_{model} dM_{WW} + \int_{\Lambda}^{M_{max}} \frac{d\sigma}{dM_{WW}}|_{A=const} dM_{WW}$$

- different only in the tail region; the regularized amplitude does not violate perturbative unitarity bounds
- Therefore, the EFT fit is sensible if and only if both signal estimates are statistically consistent, at say 2σ
- it defines our proposition for WW data analysis strategy at LHC

- Both the facts that:
 - the "bare" EFT amplitudes violate the unitarity bounds
 - ullet the EFT fit makes sense only if the tail in M_{WW} does not dominate the signal
- together with demanding $\geq 5\sigma$ deviation form the SM
- \Rightarrow characterize a certain region in the (f_i, Λ) space of an EFT "model"
- it will be referred to as the discovery region
- it is the region that can be meaningfully fitted to the data, once available and feature $\geq 5\sigma$ deviation from SM
- for a single-at-a-time non-ren. operator addition to the SM Lagrangian, the discovery region is 2D

The discovery regions for \mathcal{T}_{42} , \mathcal{T}_{44} :



blue: the bound $\Lambda \leq \sqrt{s^U}$

yellow: 5σ contour

green: 2σ stat. consistency contour

Summary

- We proposed strategy for data analysis at LHC based on the EFT approach to WW scattering
- we focused on the EFT validity, which is limited by:
 - the fact that "bare" EFT amplitudes violate perturbative unitarity bounds above $M_{WW}>\sqrt{s^U}$
 - the tail $M_{WW} > \sqrt{s^U}$ cannot dominate the effect in the EFT fit
- we preliminarly examined the usefulness of the EFT approach by finding discovery regions for several SMEFT and HEFT EFT" models" defined as SM \pm single-at-a-time non-ren. operator
- we found most of the discovery regions non-empty
- ⇒ same-sign WW channel is promising from the point of view of disentangling between the linear vs. non-linear EW symmetry realization anzatz

BACKUP

- both effective Lagrangians are renomalizable order by order in their expansions $(1/\Lambda \text{ and } p^n)$
- however, it has been argued that the so-called primary dimension d_p of operators should be counted in order to parametrize the strengths of signals measured by cross sections
- for SMEFT operators $d_p = D$;
- for HEFT it counts the canonical dimension D of the leading terms in the expansion of a given chiral operator
- Hence d_p counting links SMEFT and HEFT phenomenology: two operators of the same d_p are naively expected to contribute with similar strength to cross section

- we investigated EFT "models" that consisted in SM + a single at a time $d_p=8$ operator
- we focused on $d_p = 8$ operators since:
 - $d_p = 6$ operators that affect WW scattering, modify tripple couplings;
 - deviations in the latter can be measured independently (in)
- we focused on $d_p=8$ operators that do not affect tripple couplings (so-called gQGC operators)

$$egin{aligned} \mathcal{O}_{\mathcal{S}_0} &= \left[(D_\mu \Phi)^\dagger \ D_
u \Phi
ight] \left[(D^\mu \Phi)^\dagger \ D^
u \Phi
ight] \ \mathcal{O}_{\mathcal{S}_1} &= \left[(D_\mu \Phi)^\dagger \ D^\mu \Phi
ight] \left[(D_
u \Phi)^\dagger \ D^
u \Phi
ight] \end{aligned}$$

$$\mathcal{O}_{M_7} = (D_\mu \Phi)^\dagger W_{\alpha\nu} W^{\alpha\mu} D^\nu \Phi$$

$$\mathcal{O}_{M_0} = W_{\mu
u}^{\mathsf{a}} W^{\mathsf{a}\mu
u} \left[(D_{lpha} \Phi)^\dagger D^{lpha} \Phi
ight] \ \mathcal{O}_{M_1} = W_{\mu
u}^{\mathsf{a}} W^{\mathsf{a}
ulpha} \left[(D_{lpha} \Phi)^\dagger D^{\mu} \Phi
ight]$$

$$\mathcal{O}_{\mathcal{T}_0} = W_{\mu\nu}^{\mathsf{a}} W^{\mathsf{a}\mu\nu} W_{\alpha\beta}^{\mathsf{b}} W^{\mathsf{b}\alpha\beta} \ \mathcal{O}_{\mathcal{T}_1} = W_{\alpha\nu}^{\mathsf{a}} W^{\mathsf{a}\mu\beta} W_{\mu\beta}^{\mathsf{b}} W^{\mathsf{b}\alpha\nu} \ \mathcal{O}_{\mathcal{T}_2} = W_{\alpha\mu}^{\mathsf{a}} W^{\mathsf{a}\mu\beta} W_{\beta\nu}^{\mathsf{b}} W^{\mathsf{b}\nu\alpha}$$

$$\begin{split} \mathcal{P}_6 &= \mathrm{Tr}(\boldsymbol{V}_{\mu}\boldsymbol{V}^{\mu})\mathrm{Tr}(\boldsymbol{V}_{\nu}\boldsymbol{V}^{\nu}) \\ \mathcal{P}_{11} &= \mathrm{Tr}(\boldsymbol{V}_{\mu}\boldsymbol{V}_{\nu})\mathrm{Tr}(\boldsymbol{V}^{\mu}\boldsymbol{V}^{\nu}) \end{split}$$

$$\begin{split} \mathcal{T}_{42} &= \mathrm{Tr}(\mathbf{V}_{\alpha}W_{\mu\nu})\mathrm{Tr}(\mathbf{V}^{\alpha}W^{\mu\nu}) \\ \mathcal{T}_{43} &= \mathrm{Tr}(\mathbf{V}_{\alpha}W_{\mu\nu})\mathrm{Tr}(\mathbf{V}^{\nu}W^{\mu\alpha}) \\ \mathcal{T}_{44} &= \mathrm{Tr}(\mathbf{V}^{\nu}W_{\mu\nu})\mathrm{Tr}(\mathbf{V}_{\alpha}W^{\mu\alpha}) \\ \mathcal{T}_{61} &= W_{\mu\nu}^{a}W^{a\mu\nu}\mathrm{Tr}(\mathbf{V}_{\alpha}\mathbf{V}^{\alpha}) \\ \mathcal{T}_{62} &= W_{\mu\nu}^{a}W^{a\mu\alpha}\mathrm{Tr}(\mathbf{V}_{\alpha}\mathbf{V}^{\nu}) \end{split}$$

$$\mathcal{O}_{\mathcal{T}_0} = W^{\mathsf{a}}_{\mu
u} W^{\mathsf{a} \mu
u} W^{\mathsf{b}}_{\alpha eta} W^{\mathsf{b} lpha eta} \ \mathcal{O}_{\mathcal{T}_1} = W^{\mathsf{a}}_{lpha
u} W^{\mathsf{a} \mu eta} W^{\mathsf{b}}_{\mu eta} W^{\mathsf{b} lpha
u} \ \mathcal{O}_{\mathcal{T}_2} = W^{\mathsf{a}}_{lpha \mu} W^{\mathsf{a} \mu eta} W^{\mathsf{b}}_{eta
u} W^{\mathsf{b}
u lpha} \ \mathcal{O}_{\mathcal{T}_2}$$

- interestingly, there are 2 more operators in HEFT than in SMEFT at $d_p=8$
- correspondingly there are 2 more distinct Lorentz structures for the WWWW vertex in HEFT
- moreover, the remaining HEFT operators have trivial correspondence to the SMEFT ones, at least concerning WW scattering
- Interestingly, the operators have somehow largest discovery regions among all the $d_p=8$ operators
- Interestingly, the operators have somewhat largest discovery regions among all the $d_p=8$ operators
- Therefore, our results suggests that same-sign WW scattering can be a sensitive channel in the context of disantangling between the linear vs. non-linear hypothesis of EWSB anzatz