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Hosotani Mechanism



Wilson Line / Loop

Given a theory with a gauge field Aµ(x), we can construct the Wilson line as a
function of Aµ around a path P running from y → z

W (z, y) = exp

{
−ie

∫
P

dxµAµ(x)

}
.

The Wilson line is for non-smooth manifolds the holonomy equivalent.

Suppose we have a theory defined on the orbifold M4 × S1/Z2, then
depending on,

• Boundary conditions

• Matter content

the Wilson lines along S1 are non-trivial and develop phases θâ

corresponding to scalar degrees of freedom.
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Hosotani Mechanism - 1

Suppose we now have a group symmetry G that is broken down to G′ via
boundary conditions P0, P1, U corresponding to,

U : y → y + 2πR, P0 : y → −y,

P1 : y − πR → y + πR,

The physical d.o.f corresponding to Wilson line phases θâ are,

W (y, y + 2πR) = P exp

{
ig

∫ 2πR

0

dyAy(x, y)

}
= exp

(
iθâλâ

)
,{

θâ = gπRAâ
y, â ∈ HW

}
,

defined by the anti-commuting set HW ,

HW =

{
λâ

2
; {λâ, P0} = {λâ, P1} = 0

}
via {λa} the set of generators of G.
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Hosotani Mechanism - 2

Wilson line phases θâ appear as degenerate vacua at the classical level.

Aây

A
a,â
M

Aây

Aây

A
a,â
M

Aây

η, φ

Aây

ψ

The degeneracy is lifted by quantum corrections via Veff(θH).
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Hosotani Mechanism - 3

If the effective potential is minimised at a non-trivial configuration of Wilson
line phases,

minVeff(θH) ≡ 〈θH〉 6= 0,

the gauge symmetry is either spontaneously broken or restored.

The physical symmetry of the theory is determined by the combination of the
boundary conditions and the expectation values of Wilson line phases.

{〈θH〉;P0, P1, U}

Conclusion
The Hosotani mechanism achieves symmetry breaking and provides a Higgs
candidate which is the extra dimensional component of AM .
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6D model



Space-time and gauge symmetry

The model was proposed by Hosotani et al. in hep-ph/1710.04811.
M4 × S1

M4 × S1

〈Φ〉

SO(11) → SU(5)

GPS ∩GSM
SO(11)

L5 0

y

Formulated in a hybrid 6D compactified space with a SO(11) gauge symmetry.

ds2 = e−2σ(y)(ηµνdx
µdxν + dν2) + dy2,

• The Electroweak (EW) coordinate y ∈ [0, L5]

• The GUT coordinate ν ∈ [0, 2πR6]
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Matter Fields

The matter content consists of 6D and 5D fields transforming under SO(11).

6D fields

Gauge Bosons: AM (x, y, ν)

Spinors: Ψα
32(x, y, ν)

Dirac Vectors: Ψβ
11(x, y, ν) Ψ

′β
11(x, y, ν)

5D fields

Brane Spinor Scalar: Φ32(x, ν)

Brane Symplectic Majorana: χβ
1(x, ν)

5D / 6D Actions

Pure Bulk: Sbulk
ΨΨAM

Sbulk
Yang-Mills

Brane-Bulk: Sbrane
χχAM

Sbrane
ΦΦAM

Sbrane
ΨΦχ
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Symmetry Breaking Schematic

Parity Assignments and the UV brane scalar break SO(11) on the IR brane:

SO(11) → GPS ∩ SU(5) = GSM

Which is broken to SU(3)C × U(1)EM by the Hosotani mechanism.

SO(11)

SO(10) SO(7)× SO(4)

SO(5)/SO(4)

SO(7)/SO(6)

GPS/GSM

∼ O(MGUT)

GSM

SU(5)

∼ O(MKK5)
∼ O(1)
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Effective Potential VEff(θH)

The set of parameters P determine the Effective potential contributions from
the Fermions and Bosons
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Effective Potential VEff(θH)

The full effective potential develops a non-trivial minimum 〈θH〉, which
determines the mass spectrum on the IR brane

-0.2 -0.1 0.0 0.1 0.2

-8.04495×1012

-8.04490×1012

-8.04485×1012

-8.04480×1012

-8.04475×1012

-8.04470×1012

-8.04465×1012

-8.04460×1012

11



Numerical exploration



Numerical Scans

We aim to find as many Standard Model like solutions as possible by sampling
the UV model stochastically via the controlling parameters,

P =

k, zL︸ ︷︷ ︸
AdS5

, c0, c
′
0, c1, c2︸ ︷︷ ︸

5D masses

, µ1, µ̃2, µ11, µ
′
11︸ ︷︷ ︸

Bulk-Brane Couplings

, M,mB︸ ︷︷ ︸
5D Majorana Masses

 .

The scanning algorithm consists of two stages in the following order:

1. A uniform random sampling of the phase space with / without vetting
specified by model constraints.

2. A differential evolution algorithm based on a global χ2
G measure based

on some SM values experimental values.
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Differential Evolution

Differential evolution algorithm introduced by Storn & Price in
doi.org/10.1023/A:1008202821328, consists of 3 stages for each generation G for
a target parameter vector xG

i :

Mutation
Create a mutation vector out of 3 other r1, r2, r3 6= i members of G,

mG
i = xr1 + F (xr2 − xr3)

Recombination
Randomly splice the target vector xG

i and the mutation vectormG
i to form a

trial vector,
tG+1
i

Selection
Compare the target and trial vector. The lowest χ2

G moves to the next
generation,

xG+1
i =

tG+1
i ,if χ2

G(t
G+1
i ) < χ2

G(xi)

xG
i ,otherwise .
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Recreating the Solution

We can recreate the original solution from Hosotani et al. !
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RGE analysis and Higgs phenomenology



Overall Picture

• Look at gauge coupling unification and Weinberg Angle evolution.
• Examine the phenomenology of new states.
• Examine Higgs production cross sections.

We want to build a tower of EFTs.
µ(GeV )

MZ

MKK5

1/L5

ΛMax

4D4D

5D

6D

SU(3)C × U(1)EM

GPS

Figure 1: View 1 (5D branes with 1 extra dimension)
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Tower of States

4D RGE runnings have to take into account the additional KK states.
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4D Running

We want to run the 4D RGEs for SU(3)C × U(1)EM turning on an additional
contribution whenever we hit a Kaluza-Klein excitation, until we hitMKK5 .
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5D Running

When we hitMKK5 , switch to a 5D GPS running with formalism from Choi et al.
[hep-th/0208071]
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5D Running

At the cutoff of the 5D theory we want to look at:

• What happens with the gauge couplings in the full 6D theory?

• How do we relate the 6D bulk gauge couplings SO(11) to the 5D SU(5)

one at ΛMax.

• Is the evolution of the Weinberg angle consistent with its SU(5)

prediction?
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Higgs Phenomenology - 1

Higgs sector has an enhanced trilinear coupling and similar top Yukawa w.r.t.
the SM,

τH ∼ ∂3Veff(θH)

∂θ3H
∼ 6 · τSM

H yT ∼ ySM
T · cos(θH),

which is manifest in gg → HH via topologies,
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Higgs Phenomenology - 2
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Conclusions

• We’ve explored a dynamic way of determining the possible solutions of
the 6D GHGUT .

• Employed differential evolution to zero in on to SM-like regions.

• Set out a method to explore gauge coupling unification and Weinberg
angle evolution.

• Set out the basis for the Higgs sector phenomenology.

Thank you for your attention!
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Holonomy and Wilson Loops

Suppose we have a SU(2) theory defined on the 5D manifold M4 × S1, with a
constant gauge field,

A(y) = A3(y)
1

2
τ3 = 〈A3〉1

2
τ3

The holonomy T measures the extent to which parallel transport across a
smooth manifold changes a geometrical quantity,

T = exp

(
i

∮
S1

dy〈A3〉1
2
τ3

)
= exp

(
i〈A3〉πRτ3)

The non-trivial transport function affects the 5D wave equation for a field φ

and it’s Kaluza- Klein decomposition, resulting in a mass shift:

mn =

∣∣∣∣ nR − 1

2
〈A3〉τ3

∣∣∣∣
The non-trivial holonomy represents physical degrees of freedom that cannot
be gauged away.



Veff(θH) contribution example

Looking at the top quark contribution, it has an equation of motion,

SL(1, λ, c0)SR(1, λ, c0) + sin2 θH
2

= 0 (1)

The top quark has an effective potential contribution:

V Top
eff (θH) = − (kz−1

L )4

(4π)2

∫ ∞

0

dqq3 ln

(
1 +Q0(q) sin

2 θH
2

)
,

where :
Q0(q) =

1

SL(1, iqz
−1
L , c0)SR(1, iqz

−1
L , c0)

We add up all the contributions to form Veff(θH),

Veff(θH) = V W±
eff + V Z0

eff + V A
eff +

∑
Fermions

Veff.

Find 〈θH〉 numerically, along with the 1st solution λ1 for Equation 1,

mTop = k · λ1|θH=〈θH〉 m2
Higgs =

1

fH

∂2Veff
∂θ2H

∣∣∣∣
θH=〈θH〉



Uniform Sampling

The uniform sampling, along with its quick vetting is done the following
stages:

1. We select a subset of parameters P1 ⊂ P ,

P1 = {k, zL}

2. We then sample uniformly within their respective bounds, after which we
check the consistency condition/s in C1 defined for the subset P1. E.g.

C1 = {C1
1}

given k, zL the Kaluza Klein mass scale should be above the current LHC
upper mass limit for RS1 models of 4.1TeV:

C1
1 :

πk

zL − 1
≥ 4.1TeV

• If the point passes the consistency condition/s then we move on to the next
stage.

• If the point fails we go back and sample again for P1 .
3. We do this procedure until we’ve sampled all of P and satisfied all
constraints C



Global χ2 measure

Consists of SM central mass values and uncertainty measurements, along with
an introduced 1% theory uncertainty:

χ2
G =

∑
ξ

(µξ
SM −mξ

Gen)
2

(σξ
SM)

2 + (σξ
Theory)

2

where ξ stands for the Higgs,W± bosons, top quark, bottom quark, tau
lepton and Neutrino :

mH = 125.09± 0.16(GeV ), mW± = 80.379± 0.012(GeV ),

mt = 172.44± 0.9(GeV ), mb = 4.18± 0.04(GeV )

mτ = 1.776± 0.00012(GeV )



Differential Evolution - 1

Once we have an initial random population we proceed with the differential
evolution algorithm introduced by Storn & Price in
doi.org/10.1023/A:1008202821328, based on:

• Parallelisable algorithm based on generational selection.

• Selects the best points via the ’greedy criterion’.

• Designed to find global minima for non-continuous functions, many
minima functions.

• Consists of 3 stages Mutation, Recombination, Selection.



Differential Evolution - 2

Start off with a population of N ≥ 4 points in the phase space for a
generation G, defined by the Dx dimensional parameter vectors

{xG
i } i = 1, 2, . . . , N

Mutation
Cycle through the target vectors xG

i out of the population of generation G,
and pick 3 other distinct random vectors xG

r1,r2,r3 from G, with
r1 6= r2 6= r3 6= i for each i.

Form a mutation vectormG
i out of the 3,

mG
i = xG

r1 + F · (xG
r2 − xG

r3)

where F ∈ [0, 2] is the constant amplification factor.



Differential Evolution - 3

Recombination
Recombination aims to keep successful solutions from the previous
generation and improve on them by combining the target vector xG

i and the
mutation vectormG

i .

First pick a random index IrndChoice ∈ {1, 2, . . . Dx}. We then form a trial vector
tG+1
i which has components :

(tG+1
i )j =

(mG
i )j ,if rand(U [0, 1])j ≤ CR or j = IrndChoice

(xG
i )j ,otherwise

where rand(U [0, 1])j is a random sampling for each index j, and CR is the
constant decision factor.



Differential Evolution - 4

Selection
We now compare the two parameter vectors, i.e. the target xG

i and the trial
tG+1
i , by evaluating the model for the trial vector, against the target via χ2

G.

We admit to the new generation the trial vector if it’s χ2
G is smaller than the

target’s, otherwise the target is kept.

xG+1
i =

tG+1
i ,if χ2

G(t
G+1
i ) < χ2

G(xi)

xG
i ,otherwise .

This is the admission via the greedy criterion. Mutation, recombination and
selection is done until we hit a lower threshold of

χ2
G = 9.236
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