

Breaking down a 6D GHGUT

Dumitru Dan Smaranda Supervisors: Dr. D. J. Miller, Dr. C. Englert 3rd of June 2019

University of Glasgow

Hosotani Mechanism

6D model

Numerical exploration

RGE analysis and Higgs phenomenology

Hosotani Mechanism

Given a theory with a gauge field $A_{\mu}(x)$, we can construct the **Wilson line** as a function of A_{μ} around a path \mathscr{P} running from $y \to z$

$$W(z,y) = \exp\left\{-ie\int_{\mathscr{P}} dx^{\mu}A_{\mu}(x)\right\}.$$

The Wilson line is for non-smooth manifolds the holonomy equivalent. Suppose we have a theory defined on the orbifold $\mathscr{M}_4 \times S^1/\mathbb{Z}_2$, then depending on,

- Boundary conditions
- Matter content

the Wilson lines along S^1 are non-trivial and develop phases $\theta^{\hat{a}}$ corresponding to scalar degrees of freedom.

Suppose we now have a group symmetry G that is broken down to G' via boundary conditions P_0, P_1, U corresponding to,

$$\begin{split} U: y \to y + 2\pi R, \qquad P_0: y \to -y, \\ P_1: y - \pi R \to y + \pi R, \end{split}$$

The physical d.o.f corresponding to Wilson line phases $heta^{\hat{a}}$ are,

$$W(y, y + 2\pi R) = \mathcal{P} \exp\left\{ig \int_0^{2\pi R} dy A_y(x, y)\right\} = \exp\left(i\theta^{\hat{a}}\lambda_{\hat{a}}\right),$$
$$\left\{\theta^{\hat{a}} = g\pi R A_y^{\hat{a}}, \quad \hat{a} \in \mathcal{H}_W\right\},$$

defined by the anti-commuting set \mathcal{H}_W ,

$$\mathcal{H}_{W} = \left\{ \frac{\lambda^{\hat{a}}}{2} \quad ; \quad \{\lambda^{\hat{a}}, P_{0}\} = \{\lambda^{\hat{a}}, P_{1}\} = 0 \right\}$$

via $\{\lambda^a\}$ the set of generators of G.

Wilson line phases $\theta^{\hat{a}}$ appear as degenerate vacua at the classical level.

The degeneracy is lifted by quantum corrections via $V_{\rm eff}(\theta_H)$.

If the effective potential is minimised at a non-trivial configuration of Wilson line phases,

 $\min V_{\text{eff}}(\theta_H) \equiv \langle \theta_H \rangle \neq 0,$

the gauge symmetry is either spontaneously broken or restored.

The **physical symmetry** of the theory is determined by the *combination of the boundary conditions and the expectation values of Wilson line phases.*

 $\{\langle \theta_H \rangle; P_0, P_1, U\}$

Conclusion

The Hosotani mechanism achieves symmetry breaking and provides a Higgs candidate which is the extra dimensional component of A_M .

6D model

Space-time and gauge symmetry

The model was proposed by Hosotani et al. in hep-ph/1710.04811.

Formulated in a hybrid 6D compactified space with a SO(11) gauge symmetry.

$$ds^{2} = e^{-2\sigma(y)} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + d\nu^{2}) + dy^{2},$$

- The Electroweak (EW) coordinate $y \in [0, L_5]$
- The GUT coordinate $\nu \in [0, 2\pi R_6]$

Matter Fields

The matter content consists of 6D and 5D fields transforming under SO(11). 6D fields

> Gauge Bosons: $A_M(x, y, \nu)$ Spinors: $\Psi^{\alpha}_{32}(x, y, \nu)$ Dirac Vectors: $\Psi^{\beta}_{11}(x, y, \nu) \quad \Psi^{'\beta}_{11}(x, y, \nu)$

5D fields

 $\begin{array}{ll} \mbox{Brane Spinor Scalar:} & \Phi_{32}(x,\nu) \\ \mbox{Brane Symplectic Majorana:} & \chi_1^\beta(x,\nu) \end{array}$

5D / 6D Actions

Parity Assignments and the **UV brane scalar** break *SO*(11) on the *IR brane*:

$$SO(11) \rightarrow G_{\rm PS} \cap SU(5) = G_{\rm SM}$$

Which is broken to $SU(3)_C \times U(1)_{\text{EM}}$ by the Hosotani mechanism.

Effective Potential $V_{\text{Eff}}(\theta_H)$

The set of parameters ${\cal P}$ determine the Effective potential contributions from the Fermions and Bosons

The full effective potential develops a non-trivial minimum $\langle \theta_H \rangle$, which determines the mass spectrum on the IR brane

Numerical exploration

We aim to find as many Standard Model like solutions as possible by sampling the UV model **stochastically** via the *controlling parameters*,

$$\mathcal{P} = \left\{ \underbrace{k, z_L}_{\text{AdS5}}, \underbrace{c_0, c'_0, c_1, c_2}_{\text{5D masses}}, \underbrace{\mu_1, \tilde{\mu}_2, \mu_{11}, \mu'_{11}}_{\text{Bulk-Brane Couplings}}, \underbrace{M, m_B}_{\text{5D Majorana Masses}} \right\}.$$

The scanning algorithm consists of two stages in the following order:

- 1. A uniform random sampling of the phase space with / without vetting specified by model constraints.
- 2. A differential evolution algorithm based on a global χ^2_G measure based on some SM values experimental values.

Differential Evolution

Differential evolution algorithm introduced by Storn & Price in doi.org/10.1023/A:1008202821328, consists of 3 stages for each generation G for a target parameter vector \mathbf{x}_i^G :

Mutation

Create a *mutation vector* out of 3 other $r_1, r_2, r_3 \neq i$ members of G,

$$\mathbf{m}_i^G = \mathbf{x}_{r_1} + F(\mathbf{x}_{r_2} - \mathbf{x}_{r_3})$$

Recombination

Randomly splice the target vector \mathbf{x}_i^G and the mutation vector \mathbf{m}_i^G to form a trial vector,

 \mathbf{t}_i^{G+1}

Selection

Compare the target and trial vector. The lowest χ^2_G moves to the next generation,

$$\mathbf{x}_i^{G+1} = \begin{cases} \mathbf{t}_i^{G+1} & \text{,if } \chi_G^2(\mathbf{t}_i^{G+1}) < \chi_G^2(\mathbf{x}_i) \\ \mathbf{x}_i^G & \text{,otherwise }. \end{cases}$$

Recreating the Solution

We can recreate the original solution from Hosotani et al. !

RGE analysis and Higgs phenomenology

Overall Picture

- Look at gauge coupling unification and Weinberg Angle evolution.
- Examine the phenomenology of new states.
- Examine Higgs production cross sections.

We want to build a **tower of EFTs**.

Tower of States

4D RGE runnings have to take into account the additional KK states.

4D Running

We want to run the 4D RGEs for $SU(3)_C \times U(1)_{EM}$ turning on an additional contribution whenever we hit a Kaluza-Klein excitation, until we hit M_{KK_5} .

5D Running

When we hit $M_{\rm KK_5}$, switch to a 5D $G_{\rm PS}$ running with formalism from Choi et al. [hep-th/0208071]

At the cutoff of the 5D theory we want to look at:

- What happens with the gauge couplings in the full 6D theory?
- + How do we relate the 6D bulk gauge couplings SO(11) to the 5D SU(5) one at $\Lambda_{\rm Max}.$
- Is the evolution of the Weinberg angle consistent with its SU(5) prediction?

Higgs Phenomenology - 1

Higgs sector has an enhanced **trilinear coupling** and *similar top Yukawa* w.r.t. the SM,

$$\tau_H \sim \frac{\partial^3 V_{\text{eff}}(\theta_H)}{\partial \theta_H^3} \sim 6 \cdot \tau_H^{SM} \qquad y_T \sim y_T^{SM} \cdot \cos(\theta_H),$$

which is manifest in $gg \rightarrow HH$ via topologies,

Higgs Phenomenology - 2

- We've explored a dynamic way of determining the possible solutions of the 6D GHGUT .
- Employed differential evolution to zero in on to SM-like regions.
- Set out a method to explore gauge coupling unification and Weinberg angle evolution.
- Set out the basis for the Higgs sector phenomenology.

Thank you for your attention!

Backup Slides.

Holonomy and Wilson Loops

Suppose we have a SU(2) theory defined on the 5D manifold $\mathcal{M}_4 \times S^1$, with a constant gauge field,

$$A(y) = A^{3}(y)\frac{1}{2}\tau^{3} = \langle A^{3} \rangle \frac{1}{2}\tau^{3}$$

The holonomy T measures the extent to which parallel transport across a smooth manifold changes a geometrical quantity,

$$T = \exp\left(i\oint_{S^1} dy \langle A^3 \rangle \frac{1}{2}\tau^3\right) = \exp\left(i\langle A^3 \rangle \pi R\tau^3\right)$$

The non-trivial transport function affects the 5D wave equation for a field ϕ and it's Kaluza- Klein decomposition, resulting in a **mass shift**:

$$m_n = \left| \frac{n}{R} - \frac{1}{2} \langle A^3 \rangle \tau^3 \right|$$

The non-trivial holonomy represents physical degrees of freedom that *cannot be gauged away.*

Looking at the top quark contribution, it has an equation of motion,

$$S_L(1,\lambda,c_0)S_R(1,\lambda,c_0) + \sin^2\frac{\theta_H}{2} = 0$$
 (1)

The top quark has an effective potential contribution:

$$V_{\text{eff}}^{\text{Top}}(\theta_H) = -\frac{(kz_L^{-1})^4}{(4\pi)^2} \int_0^\infty dq q^3 \ln\left(1 + Q_0(q)\sin^2\frac{\theta_H}{2}\right),$$

where :

$$Q_0(q) = \frac{1}{S_L(1, iqz_L^{-1}, c_0)S_R(1, iqz_L^{-1}, c_0)}$$

We add up all the contributions to form $V_{\rm eff}(heta_H)$,

$$V_{\rm eff}(\theta_H) = V_{\rm eff}^{W^{\pm}} + V_{\rm eff}^{Z^0} + V_{\rm eff}^A + \sum_{\rm Fermions} V_{\rm eff}$$

Find $\langle \theta_H \rangle$ numerically, along with the 1st solution λ_1 for Equation 1,

$$m_{\rm Top} = k \cdot \lambda_1 \big|_{\theta_H = \langle \theta_H \rangle} \qquad m_{\rm Higgs}^2 = \frac{1}{f_H} \frac{\partial^2 V_{\rm eff}}{\partial \theta_H^2} \Big|_{\theta_H = \langle \theta_H \rangle}$$

Uniform Sampling

The uniform sampling, along with its quick vetting is done the following stages:

1. We select a subset of parameters $\mathcal{P}_1 \subset \mathcal{P}$,

$$\mathcal{P}_1 = \{k, z_L\}$$

2. We then sample uniformly within their respective bounds, after which we check the consistency condition/s in C_1 defined for the subset \mathcal{P}_1 . E.g.

$$\mathcal{C}_1 = \{C_1^1\}$$

given k, z_L the Kaluza Klein mass scale should be above the current LHC upper mass limit for RS1 models of **4.1 TeV**:

$$C_1^1: \qquad rac{\pi k}{z_L-1} \geq$$
 4.1 TeV

- If the point passes the consistency condition/s then we move on to the next stage.
- If the point fails we go back and sample again for \mathcal{P}_1 .
- 3. We do this procedure until we've sampled all of ${\cal P}$ and satisfied all constraints ${\cal C}$

Consists of SM central mass values and uncertainty measurements, along with an introduced 1% theory uncertainty:

$$\chi^2_G = \sum_{\xi} \frac{(\mu^{\xi}_{\rm SM} - m^{\xi}_{\rm Gen})^2}{(\sigma^{\xi}_{\rm SM})^2 + (\sigma^{\xi}_{\rm Theory})^2}$$

where ξ stands for the Higgs, W^{\pm} bosons, top quark, bottom quark, tau lepton and Neutrino :

$$m_H = 125.09 \pm 0.16(GeV), \quad m_{W^{\pm}} = 80.379 \pm 0.012(GeV),$$
$$m_t = 172.44 \pm 0.9(GeV), \quad m_b = 4.18 \pm 0.04(GeV)$$
$$m_\tau = 1.776 \pm 0.00012(GeV)$$

Once we have an initial *random* population we proceed with the differential evolution algorithm introduced by *Storn & Price* in *doi.org/10.1023/A:1008202821328*, based on:

- Parallelisable algorithm based on generational selection.
- Selects the best points via the 'greedy criterion'.
- Designed to find global minima for non-continuous functions, many minima functions.
- Consists of 3 stages Mutation, Recombination, Selection.

Start off with a population of $N \ge 4$ points in the phase space for a generation G, defined by the D_x dimensional parameter vectors

$$\{\mathbf{x}_i^G\} \qquad i=1,2,\ldots,N$$

Mutation

Cycle through the **target** vectors \mathbf{x}_i^G out of the population of generation G, and pick 3 other distinct random vectors $\mathbf{x}_{r_1,r_2,r_3}^G$ from G, with $r_1 \neq r_2 \neq r_3 \neq i$ for each i.

Form a **mutation** vector \mathbf{m}_i^G out of the 3,

$$\mathbf{m}_i^G = \mathbf{x}_{r_1}^G + F \cdot (\mathbf{x}_{r_2}^G - \mathbf{x}_{r_3}^G)$$

where $F \in [0, 2]$ is the constant amplification factor.

Recombination

Recombination aims to keep successful solutions from the previous generation and improve on them by combining the target vector \mathbf{x}_i^G and the mutation vector \mathbf{m}_i^G .

First pick a random index $I_{\text{rndChoice}} \in \{1, 2, \dots D_x\}$. We then form a trial vector \mathbf{t}_i^{G+1} which has components :

$$(\mathbf{t}_i^{G+1})_j = \begin{cases} (\mathbf{m}_i^G)_j & \text{,if rand}(U[0,1])_j \leq C_R \text{ or } j = I_{\text{rndChoice}} \\ (\mathbf{x}_i^G)_j & \text{,otherwise} \end{cases}$$

where rand $(U[0,1])_j$ is a random sampling for each index j, and C_R is the constant decision factor.

Selection

We now compare the two parameter vectors, i.e. the target \mathbf{x}_i^G and the trial \mathbf{t}_i^{G+1} , by evaluating the model for the trial vector, against the target via χ_G^2 .

We admit to the new generation the trial vector if it's χ_G^2 is smaller than the target's, otherwise the target is kept.

$$\mathbf{x}_i^{G+1} = \begin{cases} \mathbf{t}_i^{G+1} & \text{,if } \quad \chi_G^2(\mathbf{t}_i^{G+1}) < \chi_G^2(\mathbf{x}_i) \\ \mathbf{x}_i^G & \text{,otherwise }. \end{cases}$$

This is the admission via the greedy criterion. Mutation, recombination and selection is done until we hit a lower threshold of

$$\chi^2_G = 9.236$$