Baryogenesis from axion inflation

Benedict von Harling

IFAE & DESY

based on 1905.13318 w/ V. Domcke, E. Morgante & K. Mukaida

Gauge field production during axion inflation

 Consider inflation driven by axion-like scalar with coupling to hypercharge gauge boson:

$$S = \int d^4x \left\{ \sqrt{-g} \left[\frac{g^{\mu\nu}}{2} \partial_{\mu}\phi \partial_{\nu}\phi - V(\phi) \right] - \frac{1}{4} Y_{\mu\nu} Y^{\mu\nu} + \frac{\alpha_Y \phi}{4\pi f_a} Y_{\mu\nu} \tilde{Y}^{\mu\nu} \right\}$$

ullet \Rightarrow eom in momentum space of gauge field with helicity \pm :

$$0 = \left[\partial_{\eta}^{2} + k\left(k \pm 2\xi aH\right)\right] A_{Y}^{\pm}(\eta, \vec{k})$$

with

$$\xi \equiv \frac{\alpha_Y \dot{\phi}}{2\pi f_a H}$$

 \Rightarrow tachyonic instability for modes with helicity $-\text{sign}(\xi)$ (and $k < 2|\xi|aH$) \Rightarrow production of gauge bosons with fixed helicity

2

Why is this interesting?

- Axion inflation on steep potentials
 [M. Anber & L. Sorbo, 0908.4089]
 - Axion potential

$$V(\phi) = \Lambda^4(\cos(\phi/f) + 1)$$

Slow roll conditions $|V'| \ll V/M_P$, $|V''| \ll V/M_P^2 \Rightarrow f \gg M_P$. Such super-Planckian decay constants difficult to get (WGC).

- Gauge field production slows inflaton down \Rightarrow inflation possible for $f < M_P$ (requires $N \sim 10^5$ gauge fields though)
- Generation of primordial magnetic fields
 [W. Garretson, G. Field & S. Carroll, hep-ph/9209238]
 - Magnetic fields ubiquitous in Universe. In particular, blazar observations hint at primordial magnetic fields in intergalactic voids.
 - Hypermagnetic fields from inflation can survive till late times due to turbulence and helicity conservation (see later).
 - At EW phase transition transformed into magnetic fields.

Baryogenesis from decaying helicity

Let's define helicity:

$$h \equiv \frac{1}{\text{vol}\left(\mathbb{R}^3\right)} \int d^3x \, \langle \vec{A}_Y \, \vec{B}_Y \rangle \, \propto \, \int dk \frac{k^3}{2\pi^2} \left(|A_Y^+(\eta, \vec{k})|^2 - |A_Y^-(\eta, \vec{k})|^2 \right)$$

- Only modes with helicity $-sign(\xi)$ produced during inflation \Rightarrow maximally helical
- Helicity linked to B + L charge via B + L anomaly:

$$egin{align} \partial_{\mu}J_{B+L}^{\mu}&=-rac{3g_{Y}^{2}}{16\pi^{2}}Y^{\mu
u} ilde{Y}_{\mu
u}^{}+rac{3g_{W}^{2}}{16\pi^{2}}W^{a\mu
u} ilde{W}_{\mu
u}^{a}\ &\Rightarrow\partial_{\eta}q_{B+L}=-rac{3lpha_{Y}}{\pi}\partial_{\eta}h+\ldots \end{split}$$

 \Rightarrow Change in h induces change in q_{B+L} (and vice versa)!

M. Joyce & M. Shaposhnikov, astro-ph/9703005

Baryogenesis from decaying helicity

- Assume helicity h from inflation survives till EW phase transition.
- EW phase transition: hypercharge fields \rightarrow electromagnetic fields. $U(1)_{\rm em}$ does not contribute to B+L anomaly
 - ⇒ Conversion sources baryon asymmetry
 - M. Giovannini & M. Shaposhnikov, hep-ph/9708303

$$egin{aligned} \partial_{\eta}q_{B} &= -\mathsf{const.}\,\partial_{\eta}h - \,\mathsf{const.}\,\gamma_{W,\mathsf{sph}}q_{B} \ &= \mathsf{const.}\left(\partial_{\eta} heta_{W}
ight)h_{\mathrm{ini}} - \,\mathsf{const.}\,\gamma_{W,\mathsf{sph}}q_{B} \end{aligned}$$

- But competing effects from EW sphalerons!
- Competition between EW sphalerons and source term $\partial_{\eta}h$ studied in K. Kamada & A. Long, 1606.08891 & 1610.03074
 - ⇒ Sizeable baryon asymmetry remains!
 - D. Jimenez, K. Kamada, K. Schmitz & X.-J. Xu, 1707.07943

Fermion production during inflation

Anomaly equation again

$$\partial_{\eta}q_{B+L}=-rac{3lpha_{Y}}{\pi}\partial_{\eta}h+\ldots$$

- ⇒ Fermions produced together with hypercharge gauge fields!
- V. Domcke & K. Mukaida, 1806.08769
- Chirally-asymmetric production (⇒ anomaly) + Schwinger effect
- Fermions in \vec{E}_Y and \vec{B}_Y field during inflation \Rightarrow Induced current
 - ⇒ Backreaction on gauge field production!

Conditions for surviving helicity till EW scale

• In particular for right-handed electron $(q_{e_1} \equiv n_{e_1} - n_{\bar{e}_1})$:

$$\partial_{\eta}q_{
m e_{1}}=-rac{3lpha_{Y}}{\pi}\partial_{\eta}h+{
m Yukawa}$$
 interactions

- \Rightarrow After inflation $q_{e_1} = -(3\alpha_Y/\pi)h$.
- Yukawa coupling out of equilibrium for temperatures $\gtrsim 10^5 \text{GeV}$ $\Rightarrow q_{e_1}$ (approximately) conserved for constant h.
- ⇒ Chiral plasma instability can drive both q_{e1} and h to zero!
 M. Joyce & M. Shaposhnikov, astro-ph/9703005
- Estimate time scale:

$$\hat{\mathcal{T}}_{\mathrm{CPI}} \sim 10^5 \, \mathrm{GeV} \ \times \frac{g_*}{100} \left(\frac{\alpha_Y}{0.01}\right)^5 \left(\frac{H_{rh}}{10^{14} \, \mathrm{GeV}}\right)^3 \frac{\langle \hat{\vec{E}}_Y \cdot \hat{\vec{B}}_Y \rangle_{rh}/H_{rh}^4}{10^5}$$

• Require $\hat{T}_{\mathrm{CPI}} \lesssim 10^5 \mathrm{GeV}$.

7

Conditions for surviving helicity till EW scale

 Evolution of hypercharge gauge field described by magnetohydrodynamics: Navier-Stokes equation plus

$$\partial_{\eta} \vec{B}_{Y} = rac{ec{
abla}^{2}}{\sigma_{Y}} \vec{B}_{Y} + ec{
abla} imes \left(ec{v} imes ec{B}_{Y}
ight) + rac{2lpha_{Y}}{\pi} rac{\mu_{Y,5}}{\sigma_{Y}} ec{
abla} imes ec{B}_{Y} \, .$$

 Induction term dominates over diffusion term if magnetic Reynolds number satisfies (v, L typical velocity, length scale)

$$R_m \sim \sigma_Y v L \gg 1$$

- Helicity then stays constant by means of inverse cascade
- Well supported by numerical magnetohydrodynamics simulations e.g. R. Banerjee, K. Jedamzik, astro-ph/0410032

8

Conditions for surviving helicity till EW scale

Results

Conclusions

- Helical hyper gauge fields can generate baryon asymmetry during EW transition.
- Conditions for helicity to survive till EW phase transition
 - Avoid magnetic diffusion $\Rightarrow R_m \gtrsim 1$
 - ullet Avoid chiral plasma instability $\Rightarrow \hat{\mathcal{T}}_{\mathrm{CPI}} \lesssim 10^5 \mathrm{GeV}$
- $\Rightarrow 6 \times 10^{-13} < \eta_B < 4 \times 10^{-7} \text{ or } \eta_B \simeq 0$
- ullet \Rightarrow $H_{
 m inf}\sim 10^{10}-10^{12} {
 m GeV}$ and only mild dependence on ξ for $\xi\gtrsim 4$
- Theoretical uncertainties (somewhat large) purely due to SM physics
 ⇒ reducible, can falsify scenario
- Magnetic fields $\hat{B}_{\text{em},0} \lesssim 10^{-17}$ Gauss with correlation lengths $\gtrsim 0.1$ parsec insufficient to explain blazar observations