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Unexpected/surprising?

Most astrophysical models did not predict BHs with M & 20M�.
But, large BHs masses can be generated from ≥ 40M�
metal-free stars undergoing direct collapse.

Mapelli, 1809.09130



Another (more massive) puzzle

SMBHs with masses up to & 1010M� are present in the centers
of most massive galaxies, even at large redshifts.



Could they be primordial?

I PBHs could make part (but not all) the DM in the Universe.
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I Rare Hubble scale perturbations generated during inflation
can collapse into BH. If so, the power spectrum should be
enhanced by a factor of 103 on scales� CMB!



Alternative mechanisms?

Phase transitions in the early universe provide a potential
avenue: Several violent phenomena naturally occur that can
assist in generating large overdensities that gravitationally
collapse into BHs: bubble collisions, topological defects, . . .

I We will consider axionic string-wall networks.

F.F., E. Massó, G. Panico, O. Pujolàs & F. Rompineve, 1807.01707, PRL 2019
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Cosmological evolution

Important distinction whether PQ symmetry is broken before or
after inflation:
I Pre-inflationary PQ breaking→ the axion has a single

uniform initial value ai within the observable universe.
I In the post-inflationary case the axion takes different

values in different regions.

In the latter case when the axion gets its mass, around the QCD
phase transition, a hybrid string-domain wall network is formed.

Eventually, the network has to decay. Otherwise, the energy density would be quickly

dominated by domain walls.
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The collapse of closed domain walls, which belong to the hybrid
string-wall network can lead to the formation of PBHs.

T. Vachaspati, 1706.03868

It is crucial that the annihilation of the network proceeds slowly.

I This mechanism does not rely on (nor complicate) the
physics of inflation.

I GW astronomy can potentially probe the physics of axions.
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NDW = 1
Only one domain wall is attached to each string. Such
topological configurations quickly annihilate leaving behind a
population of barely relativistic axions.

T. Hiramatsu, et al., PRD 85, 105020 (2012)



NDW > 1

There are NDW domain walls attached to every string, each one
pulling in a different direction. The network can actually be
stable, and dominate the universe.

T. Hiramatsu, et al., JCAP 1301 (2013) 001



Lift the degeneracy of axionic vacua by introducing a bias term
(dark QCD?). The energy difference between the different
minima acts as a pressure force on the corresponding domain
walls.
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I The domain walls are created at T1 ∼ TQCD.
I A closed DW of size R∗ may rapidly shrink (if NDW = 1)

because of its own tension, once
R∗ ∼ H−1 ≈ geff(T∗)−1/2Mp/T 2

∗ .

I If NDW > 1, the annihilation occurs at T2 > T∗ set by
∆V
σ

.
There can be a significant separation between formation
T1 and T2.



The addition of the bias term misaligns the axion:

θmin ≈
A4

BNDW sin δ

m2NDWF 2 +A4
B cos δ

. 10−10.

The phase is related to T2, i.e. the bias,

A4
B ∼ T 2

2 σ/MP .

At constant δ, this corresponds to a line in the log F − log T2
plane. We would like δ ∼ 1.

















PBHs from string-wall defects

A closed DW of size R∗ will rapidly shrink because of its own
tension, once R∗ ∼ H−1 ≈ geff(T∗)−1/2Mp/T 2

∗ .
Its mass has contributions from the wall tension and from any
difference in energy density between the two regions separated
by the DW:

M∗ = 4πσR2
∗ +

4
3
π∆ρR3

∗ ≈ 4πσH−2
∗ +

4
3
π∆ρH−3

∗

⇒ Heavier black holes form from DW which collapse later in
cosmological history.



The Schwarzschild radius of the collapsing defect is
RS,∗ = 2GNM∗, and the figure of merit for PBH formation is:

p ≡ RS,∗/R∗ ∼
σH−1

∗
M2

p
+

∆ρH−2
∗

3M2
p

⇒ As the temperature decreases it becomes more likely to
form a black hole.



Two regimes:
I When the tension dominates, M∗ ∼ T−4

∗ an p ∼ T−2.
I When the energy density dominates, M∗ ∼ T−6

∗ an
p ∼ T−4.

(Deviations from spherical symmetry, radiation friction during collapse can partly

modify this picture.)
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Axion-QCD vs ALPs

I For the QCD axion we find an interesting region around

fa ∼ 109 GeV.

PBHs of mass 10−4M� can form with p ∼ 10−6.
I For generic ALPs we can reach larger probabilities

p ∼ 10−3 in scenarios where

T2 ∼ keV.

Interestingly much larger BHs, . 108M� could be formed.

B. Carr & J. Silk, 1801.00672



Late collapses

Most of the axionic string-wall network disappears at T2, which
is when the vacuum contribution starts dominating, and both p
and M∗ increase steeply.
But, 1− 10% of the walls survive until ∼ 0.1T2, when:
I p ∼ 1
I M∗ ∼ 106M�

⇒ A fraction f ∼ 10−6 of the DM end up forming SMBHs!

B. Carr & J. Silk, 1801.00672
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We have not said much about the bias term . . .

Planck suppressed operators are unlikely.

A dark gauge sector with ΛB ∼ MeV is an interesting possibility.



Conclusions

I LIGO has confirmed the existence of BH binaries that are
able to merge within a Hubble time. BHs could be
primordial and make up a fraction, but not all, of the DM.

I Axionic topological defects with NDW > 1 lead to a new
Network Annihilation epoch that can potentially generate
PBHs of up to 106M�.

I This could explain the origin of the SMBHs and influence
the formation of LSS.

I The LIGO/Virgo horizon is z ∼ 0.1− 0.2, but
third-generation ground-based GW detectors (e.g. Einstein
Telescope) will be able to observe binary mergers up to
z ∼ 10.
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