Planck 2019, Granada, June 4 2019

B-decay discrepancies after Moriond 2019

Presented by Jason Aebischer

Excellence Cluster Technische Universität München

Outline

Motivation

- 2 Numerical tools
- 8 Fitting anomalies
- 4 Summary

Based on:

JA, Jacky Kumar, Peter Stangl, David M. Straub [arXiv:1810.07698] JA, Wolfgang Altmannshofer, Diego Guadagnoli, Méril Reboud, Peter Stangl, David M. Straub [arXiv:1903.10434]

Outline

Motivation

- 2 Numerical tools
- 8 Fitting anomalies
- 4 Summary

$b ightarrow s \, \mu^+ \mu^-$ anomaly

Several LHCb measurements deviate from Standard model (SM) predictions by $2-3\sigma$:

- Angular observable P'_5 in $B \to K^* \mu^+ \mu^-$. LHCb, arXiv:1512.04442
- ▶ Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731

Hints for LFU violation in neutral current decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1406.6482, arXiv:1705.05802

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^+\mu^-)}{BR(B \to K^{(*)}e^+e^-)}$$

see also fits by other groups: Capdevila et al., arXiv:1704.05340 D'Amico et al., arXiv:1704.05438 Geng et al., arXiv:1704.05446 Ciuchini et al., arXiv:1704.05447

(this slide: excluding results from Moriond 2019)

Hints for LFU violation in neutral current decays

Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each. LHCb, arXiv:1406.6482, arXiv:1705.05802

$$R_{K^{(*)}} = rac{BR(B o K^{(*)} \mu^+ \mu^-)}{BR(B o K^{(*)} e^+ e^-)}$$

see also fits by other groups: Capdevila et al., arXiv:1704.05340 D'Amico et al., arXiv:1704.05438 Geng et al., arXiv:1704.05446 Ciuchini et al., arXiv:1704.05447

(this slide: excluding results from Moriond 2019)

Hints for LFU violation in charged current decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb show combined deviation from SM by 3.6-3.8 σ .

LHCb, arXiv:1506.08614, arXiv:1708.08856 Belle, arXiv:1507.03233, arXiv:1607.07923, arXiv:1612.00529

HFLAV, arXiv:1612.07233

Outline

1 Motivation

2 Numerical tools

8 Fitting anomalies

4 Summary

Tools for the numerical analysis

- Computing hundreds of relevant flavour observables properly accounting for theory uncertainties

 - flavio https://flav-io.github.io

Straub. arXiv:1810.08132

Representing and exchanging thousands of Wilson coefficient values, different EFTs, possibly different bases

Wilson coefficient exchange format (WCxf) https://wcxf.github.io/

JA et al., arXiv:1712.05298

RG evolution above* and below the EW scale, matching from SMEFT to the weak effective theory (WET)

JA, Kumar, Straub, arXiv:1804.05033

* based on DsixTools Celis, Fuentes-Martin, Vicente, Virto, arXiv:1704.04504

Global SMEFT likelihood

JA, Kumar, PS, Straub, arXiv:1810.07698

Based on tools above, builds a SMEFT LikeLihood

- Smelli https://github.com/smelli
- So far, 265 observables included
 - ▶ Rare *B* decays
 - Semi-leptonic B and K decays
 - Meson-antimeson mixing
 - FCNC K decays
 - (LFV) tau and muon decays
 - Z and W pole EWPOs
 - ▶ g 2
- Real global likelihood is work in progress and open to everybody: smelli is open source

Outline

1 Motivation

2 Numerical tools

8 Fitting anomalies

4 Summary

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and $R_{\!K}$ & $R_{\!K^*}$

WET at 4.8 GeV

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and $R_{\!K}$ & $R_{\!K^*}$

After Moriond 2019:

Updated R_{K} measurement by LHCb and new R_{K^*} measurement by Belle closer to SM value LHCb, arXiv:1903.09252 Belle, arXiv:1904.02440

Tension between fits to $R_{\rm K}$ & $R_{\rm K^*}$ and $b \rightarrow s \mu \mu$ observables in C_9 direction

WET at 4.8 GeV

WET at 4.8 GeV

Before Moriond 2019:

Very good agreement between fits to $b
ightarrow s \mu \mu$ observables and $R_{\!K}$ & $R_{\!K^*}$

After Moriond 2019:

Updated R_{K} measurement by LHCb and new R_{K^*} measurement by Belle closer to SM value LHCb, arXiv:1903.09252 Belle, arXiv:1904.02440

Tension between fits to $R_K \& R_{K^*}$ and $b \rightarrow s \mu \mu$ observables in C_9 direction

Global likelihood:

Contribution to purely left-handed $C_9^{bs\mu\mu} = -C_1^{bs\mu\mu}$ yields very good fit to experimental data

- LFU contribution only affects $b \rightarrow s \mu \mu$ observables
- ► Tension between fits to b → sµµ observables and R_K & R_{K*} could be reduced by LFU contribution to C₉
- Perform two-parameter fit in space of $C_9^{\text{univ.}}$ and $\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$:

$$\begin{array}{ll} C_{9}^{bsee} = C_{9}^{\text{univ.}} & C_{10}^{bsee} = 0 \\ C_{9}^{bs\mu\mu} = C_{9}^{\text{univ.}} + \Delta C_{9}^{bs\mu\mu} & C_{10}^{bs\mu\mu} = -\Delta C_{9}^{bs\mu\mu} \\ C_{9}^{bs\tau\tau} = C_{9}^{\text{univ.}} & C_{10}^{bs\tau\tau} = 0 \end{array}$$

Before Moriond 2019:

Fit compatible with $C_9^{\text{univ.}} = 0$ and only contribution to $C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$

WET at 4.8 GeV

Before Moriond 2019:
 Fit compatible with C₉^{univ.} = 0 and only contribution to C₉^{bsμμ} = -C₁₀^{bsμμ}

After Moriond 2019: Preference for non-zero C₉^{univ.}

WET at 4.8 GeV

Before Moriond 2019:
 Fit compatible with C₉^{univ.} = 0 and only contribution to C₉^{bsμμ} = -C₁₀^{bsμμ}

- After Moriond 2019: Preference for non-zero C₉^{univ.}
- C₉^{univ.} can arise from RG effects:

Bobeth, Haisch, arXiv:1109.1826 Crivellin, Greub, Müller, Saturnino, arXiv:1807.02068

RG effects require scale separation

Consider SMEFT at 2 TeV

Possible operators:

• $[O_{lq}^{(3)}]_{3323} = (\bar{l}_3 \gamma_\mu \tau^l l_3) (\bar{q}_2 \gamma^\mu \tau^l q_3)$: Can also explain $R_{D^{(*)}}$ anomalies!

► $[O_{lq}^{(1)}]_{3323} = (\bar{l}_3 \gamma_\mu l_3) (\bar{q}_2 \gamma^\mu q_3)$: Strong constraints from $B \to K \nu \nu$ require $[C_{lq}^{(1)}]_{3323} \approx [C_{lq}^{(3)}]_{3323}$

Buras et al., arXiv:1409.4557

•
$$[O_{qe}]_{2333} = (\bar{q}_2 \gamma_\mu q_3)(\bar{e}_3 \gamma^\mu e_3)$$
 cannot explain $R_{D^{(*)}}$

Four-quark operators cannot explain R_{D(*)}, models yielding large enough contributions already in tension with data

$$\begin{split} & [C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} \implies C_{9}^{\text{univ.}} \quad (\text{RG effect}) \\ & [C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223} \implies \Delta C_{9}^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

$$\begin{split} & [C_{l_q}^{(1)}]_{3323} = [C_{l_q}^{(3)}]_{3323} \implies C_9^{\text{univ.}} \text{ (RG effect)} \\ & [C_{l_q}^{(1)}]_{2223} = [C_{l_q}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

After Moriond 2019:

Clear preference for non-zero $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323}$

$$\begin{split} & [C_{l_q}^{(1)}]_{3323} = [C_{l_q}^{(3)}]_{3323} \implies C_9^{\text{univ.}} \text{ (RG effect)} \\ & [C_{l_q}^{(1)}]_{2223} = [C_{l_q}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

After Moriond 2019: Clear preference for non-zero $[C_{la}^{(1)}]_{3223} = [C_{la}^{(3)}]_{3223}$

$R_{D^{(*)}}$ explanation:

Agreement with combined ${\it R}_{{\it K}^{(*)}}$ and $b
ightarrow s \mu \mu$ explanation has improved

$$\begin{split} & [C_{l_q}^{(1)}]_{3323} = [C_{l_q}^{(3)}]_{3323} \implies C_9^{\text{univ.}} \text{ (RG effect)} \\ & [C_{l_q}^{(1)}]_{2223} = [C_{l_q}^{(3)}]_{2223} \implies \Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu} \end{split}$$

Before Moriond 2019:

Fit compatible with $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323} = 0$ and only contribution to $[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$

After Moriond 2019: Clear preference for non-zero $[C_{la}^{(1)}]_{3223} = [C_{la}^{(3)}]_{3223}$

R_D(*) explanation:

Agreement with combined ${\it R}_{{\it K}^{(*)}}$ and $b
ightarrow s \mu \mu$ explanation has improved

Fitting anomalies in a U₁-leptoquark model

▶ U₁ vector leptoquark (3, 1)_{2/3} couples quarks and leptons

$$\mathcal{L}_{\mathit{U_1}} \supset g_{\mathit{lq}}^{\mathit{ji}} \left(ar{q}^{\mathit{i}} \gamma^\mu \mathit{l}^{\mathit{j}}
ight) \mathit{U_\mu} + \mathsf{h.c.}$$

Generates semi-leptonic operators at tree-level

$$[C_{lq}^{(1)}]_{ijkl} = [C_{lq}^{(3)}]_{ijkl} = -rac{g_{lq}^{ik}\,g_{lq}^{il*}}{2M_U^2}.$$

And dipole operators at one-loop, e.g. $[O_{dV}]_{ij} = (\bar{q}_i \sigma^{\mu\nu} V_{\mu\nu} d_j) \varphi, \quad V \in \{W, B, G\}:$

$$[C_{dV}]_{23} = \kappa_V \frac{Y_b}{16\pi^2} \sum_i \frac{g_{lq}^{i2} g_{lq}^{i3*}}{M_U^2}, \qquad \kappa_W = \frac{g}{6}, \quad \kappa_B = \frac{-4 g'}{9}, \quad \kappa_V = \frac{-5 g_s}{12}$$

Fitting anomalies in a U₁-leptoquark model

- *R*_D(*) mostly depends on tauonic couplings *g*³²_{lq}, *g*³³_{lq}
- Dipole operators contribute to $BR(B \rightarrow X_s \gamma)$
- RG running contributes to leptonic τ decays
- Well defined allowed region for explaining R_D(*), select benchmark point

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.8$$

Fitting anomalies in a U_1 -leptoquark model

• Benchmark point explaining $R_{D^{(*)}}$,

$$g_{lq}^{32} = 0.6, \qquad g_{lq}^{33} = 0.8,$$

implies non-zero C₉^{univ.}

- *R_{K(*)}* can be explained by additional muonic couplings *g²²_{Iq}*, *g²³_{Iq}*
- Constraint from LFV observables

Before Moriond 2019:

Given non-zero $G_9^{\rm univ.}$, tension between fits to $R_{\kappa^{(*)}}$ and $b \to s \mu \mu$ observables

Fitting anomalies in a U_1 -leptoquark model

• Benchmark point explaining $R_{D^{(*)}}$,

$$g_{lq}^{32}=0.6, \qquad g_{lq}^{33}=0.8,$$

implies non-zero C₉^{univ.}

- *R_{K(*)}* can be explained by additional muonic couplings *g²²_{Iq}*, *g²³_{Iq}*
- Constraint from LFV observables

Before Moriond 2019:

Given non-zero $C_9^{\text{univ.}}$, tension between fits to $R_{\kappa(*)}$ and $b \rightarrow s \mu \mu$ observables

 After Moriond 2019: Non-zero C₉^{univ.} preferred, R_κ(*) and b → sμμ in good agreement

Outline

Motivation

- 2 Numerical tools
- 8 Fitting anomalies

4 Summary

Summary

Solving the anomalies in

• WET:
$$\Delta C_9^{bs\mu\mu} = -C_{10}^{bs\mu\mu}$$
 and $C_9^{univ.}$

▶ SMEFT:
$$[C_{lq}^{(1)}]_{2223} = [C_{lq}^{(3)}]_{2223}$$
 and $[C_{lq}^{(1)}]_{3323} = [C_{lq}^{(3)}]_{3323}$

► U_1 LQ: g_{lq}^{32} , g_{lq}^{33} and g_{lq}^{22} , g_{lq}^{23}

Backup slides

Installing smelli

- Prerequisite: working installtion of Python version 3.5 or above
- Installation from the command line:

python3 -m pip install smelli --user

- downloads smelli with all dependencies from Python package archive (PyPI)
- installs it in user's home directory (no need to be root)