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Swampland and WGC

Swampland and WGC

Swampland: Set of effective field theories that do not admit a string
theory UV completion. [1]
Swampland criteria like WGC: Gravity is always the weakest force. [2]
The most widely studied example is U(1) gauge boson coupled to
gravity.

There must always exist a charged particle with massm
and charge q such thatm ≤ gqMp

Generalized to several U(1)’s and antisymmetric tensor couplings.
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Swampland and WGC

Approaches to WGC

Which is the physical origin?:
1 Something primarily related to black-holes and their stability.
2 General principle of gravity being the weakest force.

Potentially there many physical instances in which interactions weaker
than gravity, consider φHH.
Palti’s Scalar Weak Gravity Conjecture says that: (∂φm)2 ≥ m2

M2
p�� ��[3] Palti ’17. The Weak Gravity Conjecture and Scalar Fields.
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SSWGC

Strong Scalar Weak Gravity Conjecture

We search for a generalization that applies to any scalar in the theory.
Palti’s conjecture would be inconsistent with periodic potentials
(axions in String Theory) → add quartic term.

The potential of any canonically normalized real scalar,V (φ),
must verify for any value of the field the constraint:

2 (V ′′′)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
p�� ��[4] E. Gonzalo and L. Ibañez ’19
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SSWGC

Strong Scalar WGC

Factor of 2 motivated by the exchange diagram in φHH + φφHH
theory.

2 (V ′′′)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
p
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SSWGC

Motivation

I will not go more into the reasoning for the precise factors in the
constraint.
Some interesting implications are obtained only for this choice.
There is a work in progress towards a better understanding of the
physical origin.
In this future work we re-write the constraint in a way that it’s easy to
generalize to multiple scalar fields.

2 (V ′′′)2 − V ′′V ′′′′ ≥ (V ′′)2

M2
p
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SSWGC

First checks

V = − cos(φ/f )) −→ f 2 ≤ M2
p(1 + 2 tan2(φ/Mp)).

V (φ) = 1
2m

2φ2 + 1
4λφ

4

λ(3λ
2 φ

2 − m2) ≥ 1
M2

p
(m2 + λ

2φ
2)2

For φ2 � M2
p the constraint amounts to the left hand side being

positive.
Automatic for m2 < 0 and λ positive, as in the SM. For values of φ
close to the Planck mass the Higgs potential requires an UV
completion.
For m2 > 0 the constraint is only obeyed for φ2 > (2/3)m2.
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Applications

Inflation: φa

For 0 ≤ a < 1 the potential has only tiny violations of the bound at
small φ.
For a > 2 the violations are large but are trans-Planckian for a > 2.7.
For 1 < a ≤ 2 the bound is irremediably violated at all points of field
space. By itself a massive field is inconsistent with quantum gravity.
a = 0 and a = 1 are the only pure monomials which satisfy the bound
at all points of field space.
Among chaotic inflation models the linear potential is singled out as
the unique class which can lead to sufficient inflation.
Linear potentials may yield 50-60 e-folds and tensor perturbations with
r ' 0.07.
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Applications

Inflation

V (b) = A(1 + B b2)1/2 and V =
(
1 − e−

√
2/3φ/Mp

)2

We define χ ≡ 2 (V ′′′)2 − V ′′′′V ′′ −
(
V ′′

Mp

)2
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Figure: a) The value of χ for A = 1 and B = 0.2, 0.5, 1.0. The SSWGC
implies χ ≥ 0. b) The value of χ for the Starobinsky potential. They require
modifications at large trans-Planckian distances.
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Applications

Neutrino bounds

Consider the SM compactified in a circle of radius R down to 3D,

canonical kinetic term given by R = re
φ

M3dp
√

2 .
Well below the electron threshold, 3D one-loop effective potential for
R is given by:

V (R) =
2πr3Λ4

R2 − 4
(

r3

720πR6

)
+

∑
νe ,νµ,ντ

r3VC [R,mνi ]

VC [R,mνi ] =
nνi m

2
νi

8π4R4

∞∑
n=1

K2(2πmνinR)

n2 .
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Applications

Neutrino Bounds

Unless the lightest Dirac neutrino is sufficiently light for some value of
R the scalar interaction becomes weaker than gravitation.
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Figure: χ̃
M2

p
≡ 2

(
V ′′′

V ′′

)2
− V ′′′′

V ′′ . NH neutrino lighter than 1.5× 10−3 eV.
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Applications

Neutrino Bounds

Similar constraints were obtained using another Swampland
Conjecture:

A theory such that any of its compactifications has a stable AdS,
non susy vacuum is in the swampland.

We can combine this bound with the results in [5] to conclude that, if
both conjectures are true, then neutrinos must have a Dirac mass
term with normal hierarchy.
Normal hierarchy is therefore another non-trivial prediction that arises
from the conjecture.�� ��[5] E. Gonzalo, A. Herráez and L. Ibañez ’18
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Applications

Moduli fixing in String Vacua

KKLT W = W0 + ce2πaT
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Figure: As long as W0 is large enough to generate a minimum the bound is
verified. We obtain constraints on the parameters of the model.
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Conclusions

Conclusions

We have proposed a new Swampland conjecture which is very
predictive.
It is a generalization of the Weak Gravity Conjecture for scalar fields
that works for axions.
Linear potentials are singled out so the conjecture points towards
tensor perturbations with r ' 0.07.
There is an upper bound on the mass of the lightest Dirac neutrino.
Combined with an extra Swampland criteria it rules out inverse
hierarchy and pure Majorana masses.
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Conclusions

Outlook

Further efforts should be made to understand its physical origin as
coming from a "Gravity as the Weakest Force" condition.
Diagrammatic interpretation needs to be better understood.
What would actually go wrong? Is there an analogy with Black-Hole
instability?
Generalization to more complex situations. The case with multiple
scalar fields is being worked out at present.
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