Southampton elusi Des in Disibles Plus School of Physics neutrinos, dark matter & dark energy physics and Astronomy

Theories of Flavour From the Planck Scale to the Electroweak Scale

Steve King

NExT Meeting, Southampton, 7th November, 2018

Prelude

The Flavour Problem

Theories of Flavour with effective Yukawa couplings

The Standard Model

has flavour problem…

The Flavour Problem

Angles and CP

Leptons

Yukawa couplings

 $y_{ij}H\psi_{i}\psi_{j}^{c}$ *j*

Why so small (apart from top quark)? *ⁱ*

r Yukawa couplings Yukawa couplings

non-zero charge under the associated *U*(1)⁰ gauge group,

 $H \psi_i \psi_j^c$ *^j ,* (1)

plus *H.c.*, summed over fields, families and powers of *n, m*. Eq.1 involves new SM singlet ψ_i ii ψ_j^c due to $\langle \phi \rangle$ of h*i*i*/*⇤. Our scenario also involves a massive *Z*⁰ under which the three SM families *ⁱ* $\langle \phi \rangle$ Λ Yukawas small due to powers of ratios

Flavour scales can be from the Planck scale to electroweak scale

> $\langle \phi \rangle$ Λ Keeping fixed ratios

SUSY GUTs suggest high scale theory of flavour

Phenomenological hints from B physics suggest low scale theory of flavour

Part I

SUSY GUTs of Flavour

High scale theories of flavour

SU(5) GUT

Georgi, Glashow 1974

Right-handed neutrino is optional singlet

For references see review SFK 1701.04413

GUTs with flavour symmetry

Table 3: Flavour end of the state of the papers of the papers and the papers of the papers of papers that use the papers the papers of the

Flavour Symmetry

in the Yukawa matrices, providing no extra degrees of freedom in the determination of the Yukawas of the Suday. The same is the same is the flavor of the same is the flavor than the flavor the flavor the flavor of the flavor The neutrino matrix *m*⌫ is given in Eq. 2.15. Letting *v^f* represent the VEV of a field *f*, Björkeroth, de Anda, de Medeiros Varzielas, SFK

fields *e*, *^µ* and ⌧ , which provide the necessary hierarchy in the down-quark and charged lepton Yukawa sector. *Y ^u* = \blacksquare *^u*11*|*˜⇠⁴*[|] ^u*12*|*˜⇠³*[|] ^u*13*|*˜⇠²*[|] ^u*12*|*˜⇠³*[|] ^u*22*|*˜⇠²*[|] ^u*23*|*˜⇠*[|]* $\overline{}$ SU(5)xA4 predicts Yukawa matrices

Solves the strong CP problem:
\n
$$
Y^{u} = \begin{pmatrix} u_{11}|\tilde{\xi}^{4}| & u_{12}|\tilde{\xi}^{3}| & u_{13}|\tilde{\xi}^{2}| \\ u_{12}|\tilde{\xi}^{3}| & u_{22}|\tilde{\xi}^{2}| & u_{23}|\tilde{\xi}| \\ u_{13}|\tilde{\xi}^{2}| & u_{23}|\tilde{\xi}| & u_{33} \end{pmatrix}
$$
\n
$$
Y^{d} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{4}d_{11} \frac{|v_{\xi}v_{e}|}{|v_{\Lambda_{24}}|^{2}} & d_{12} \frac{|v_{\xi}v_{\mu}|}{|v_{\Lambda_{24}}v_{H_{24}}|} e^{i\zeta} & 0 \\ 0 & 2d_{22} \frac{|v_{H_{24}}v_{\mu}|}{M^{2}} & 0 \\ 0 & 0 & d_{33} \frac{|v_{\tau}|}{M} \end{pmatrix}
$$

Y d |}
|} p2 **afr** a 4 *|v*⇤²⁴ *| |v*⇤²⁴ *v^H*²⁴ *| d*¹¹ *|<i><u>l</u>***_{***x***}** α **^{***/***}** α **^{***/***}** α **</sup>***/* α **^{***/***}** α **</sup>***/* α */* α */***** 16 C. *|v*⇠*vµ|* Up matrix has small 0 2*d*²² *|v^H*²⁴ *vµ|* mixing and no phases

eⁱ⇣ 0 Down matrix gives Cabibbo m mixing and CP phase

$$
m_D = \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix} \ \ M_R = \begin{pmatrix} M_{\rm atm} & 0 \\ 0 & M_{\rm sol} \end{pmatrix}
$$

Littlest Seesaw with 4 parameters $Y^e = \frac{1}{\sqrt{2}}$ $\overline{\sqrt{2}}$ $\begin{pmatrix} 1 \end{pmatrix}$ $\overline{}$ 9 $d_{11} \frac{|v_{\xi}v_{e}|}{|v_{e}||v_{e}|}$ $|v_{\Lambda_{24}}|$ $\frac{1}{2}$ (0) (0) $d_{12} \frac{|v_{\xi}v_{\mu}|}{|v_{\xi}v_{\mu}|}$ $|v_{\Lambda_{24}}v_{H_{24}}|$ $e^{i\zeta}$ 9*d*₂₂ $\frac{|v_{H_{24}}v_{\mu}|}{M^2}$ $\frac{H_{24}P_{\mu_1}}{M^2}$ 0 0 $d_{33} \frac{|v_\tau|}{M}$ $\frac{1}{M}$. $\sqrt{2}$ $\begin{array}{c} \hline \end{array}$

No LH charged lepton mixing to leading order by field redefinition. Without loss of generality we have rephased fields such that the quark CP violation originates from the single phase ⇣ appearing in *Y ^d*

SFK, Molina Sedgwick, Rowley 1808.01005

The Fitting high-energy Littlest Seesaw parameters using low-energy neutrino data and leptogenesis ✓12*/* 34*.*254 ! 34*.*350 34*.*236 ! 34*.*365 34*.*217 ! 34*.*383 ✓13*/* 8*.*370 ! 8*.*803 8*.*300 ! 8*.*878 8*.*218 ! 8*.*959 ✓23*/* 45*.*405 ! 45*.*834 45*.*343 ! 45*.*910 45*.*269 ! 45*.*996 *a* reprogenesis

Predicts: $\sqrt{2}$ \setminus 0 *b* $\sqrt{2}$ $\begin{pmatrix} 0 \ 0 \end{pmatrix} \begin{pmatrix} 0 \ M_{\rm sol} \end{pmatrix}$ $M_{\rm atm}$ 0 $M_R =$ $m_D =$ *a* 3*b* \overline{a} *a b* 1.10 70 60 1.08 50 $\sum_{\substack{0 \text{odd} \\ \text{odd} \\ \text{odd}}} 1.06$
 $\chi^2/d.o.f. = 2.07/3$ 40 -30^{Δ} x^2 20 $1.02₁$ \vert 10 1.32^{5} 1.35^{0} 1.31^{5} 1.40^{0}
 $M_{atm}/10^{13}$ GeV $1.00 +$ 2.300

4 real input parameters Predicts: 3 neutrino masses (m₁=0), **3 mixing angles, 1 Dirac CP phase,** 2 Majorana phases (1 zero) **1 BAU parameter YB** <u>= 10 observables</u> ²*/*10³eV² ²*.*⁴³⁴ ! ²*.*561 2*.*⁴⁰⁷ ! ²*.*587 2*.*³⁷⁷ ! ²*.*⁶¹⁶

of which 7 are constrained <u>Case de values of the values of the model are slightly lower than in Case A, as slightly lower than in Case A, as a</u> <u>or which *r* are co</u>

 \propto

Jordan Bernigaud, Bjorn Herrmann, SFK, Samuel J. Rowley (in progress) ardon Dr

a^T *aF T* ³³ -1966 -1966 SUSY SU(5)xA4 @LHC **CUCCO CULLEY AND ALLEY**

SUSY breaking masses at M_{GUT}

 $\begin{matrix} \mathbf{F} \mathbf{F} \ \mathbf{n} \ n \end{matrix}$ $\frac{1}{2}$ $m_F = m_{\tilde{D}^c_i} = m_{\tilde{L_i}} = m_{H_u} = m_{H_d} \, ,$ $m_{T1} = m_{\tilde{Q_1}} = m_{\tilde{U_1}^c} = m_{\tilde{E_1}^c}$, $m_{T2} = m_{\tilde{Q_2}} = m_{\tilde{U_2}^c} = m_{\tilde{E_2}^c}$, $m_{T3} = m_{\tilde{Q_3}} = m_{\tilde{U_3}}$ ^c = $m_{\tilde{E_3}}$

*M*¹ 250.0 600.0 m_{H_d} , Light charginos, **neutralinos and** $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ *C* **KH** smuons c . And smuons and $\mathsf{R}\mathsf{H}$ smuons

Flavour Violating Parameters at MGUT

Part II

Phenomenological hints from B physics

Low scale theories of flavour

- \bullet b \rightarrow s|⁺| - transitions are rare in the SM (no tree level contributions: GIM, CKM, in some cases helicity suppressed)
- contributions:
ideally suite UIT, UNT, ITT SUITE CASES HEILICY SUPPLESSED)
d for indirect Nlow Physics seerches cany sureed for man eeer vew ringsies searenes
directly sensitive to energy scales O(100TeV)) • ideally suited for indirect New Physics searches • ideally suited for indirect New Physics searches (indirectly sensitive to energy scales O(100TeV))

LFU tests with B→K(*)μμ and B→K(*)ee decays: R(K) and R(K*)

• Theoretical uncertainties on the exclusive $B\rightarrow K(*)$ II branching fractions are **reduced to a per-mille level** in ratios *(hadronic effects cancel)*:

$$
R(K) = \frac{B^+ \to K^+ \mu^+ \mu^-}{B^+ \to K^+ e^+ e^-} \quad R(K^*) = \frac{B^0 \to K^{*0} \mu^+ \mu^-}{B^0 \to K^{*0} e^+ e^-}
$$

- SM, $R(K)$ and $R(K^*)$ expected to be close to unity.
- Sensitive to new neutral and heavy gauge bosons, lepto-quarks, Z' models.

R(K) and R(K*) results on behalf of the LHCb collaboration

LHCb focusses on the q2 regions with reliable theoretical predictions and small contributions from the resonant modes. Precision limited by statistics.

Siim Tolk

Possible operators for R_K, R_K* \sim \sim \sim \sim \sim \sim \sim \sim ssinie oner Many others... tive Lagrangian for semi-leptonic *^b* ! *sµ*⁺*µ* transitions ossibie op contains the terms of the terms
The terms of the te 4*G^F* 10*O^µ* flavour space. Of course, any full-fledged (i.e. *SU*(2)*^L* ⇥ *V* ible operators for R_K , R_K*

$$
\mathcal{L}_{b \to s\mu\mu}^{\text{NP}} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\delta C_9^{\mu} O_9^{\mu} + \delta C_{10}^{\mu} O_{10}^{\mu} \right) + \text{h.c.}
$$
\nAltmannshofer, Stangl, Straub'17

([1*.*00*,* 0*.*32]) at 1 (2). Adding also the data on

$$
O_9^{\mu} = \frac{\alpha}{4\pi} (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \mu) ,
$$

$$
O_{10}^{\mu} = \frac{\alpha}{4\pi} (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \gamma_5 \mu) .
$$

and LFU observables Assuming LH currents $\overline{}$ (*^Q* $\sum_{i=1}^{n}$ LH currents

 \sqrt{a} in the context of \sqrt{a} in \sqrt{a} in \sqrt{b} models. $(\bar{s}_L \gamma_\mu b_L)(\bar{\mu}_L \gamma^\mu \mu_L)$

contains an additional contribution to the e \sim fermion operator with left-handed \sim *b-quark* financies in the right 1 Z' interpretation of R_K, R_K* $\overline{}$ muon, *b*-quark, and *s*-quark fields: *R^K* and *R^K*⇤ As discussed in the Introduction, one possible explanation of the *R^K* and *L* interpretation of R_K, R_K* contains an additional contribution to the e 4 ective 4-fermion operator with left-handed \sim *<i>z gbb*¯*bL^µb^L* + *gµµµ*¯*L^µµ^L* R_{K} , R_{K*} a in an a or b . b . b . c

 $\frac{1}{2}$.

 $\Delta\mathcal{L}_{\text{eff}} \supset G_{bs\mu}(\bar{b}_L\gamma^{\mu}s_L)(\bar{\mu}_L\gamma_{\mu}\mu_L) + \text{h.c.},$ $G_{bs\mu} \approx$ $\frac{1}{(31.5 \text{ TeV})^2}$. $\sigma_{bs\mu} > 0$ inducines $C_9 < 0$ and $C_9 = -C_{10}$ $C_{\alpha}^{\mu} > 0$ matches $C_{\alpha}^{\mu} < 0$ and $C_{\alpha}^{\mu} = -C_{10}^{\mu}$ ^(31.5) 1ev)² $\Delta\mathcal{L}_{\text{eff}}\supset G_{bs\mu}(b_L\gamma^{\mu}s_L)$ ΔL_{θ} $\sigma_{\rm eff} \supset G_{bs\mu}(b_L \gamma^\mu s_L)(\mu)$ $G_{bs\mu} > 0$ matches $C_9^{\mu} < 0$ and $C_9^{\mu} = -C_{10}^{\mu}$ $T^{\mu\nu}$, implies that is the diagonal $(31.5 \text{ TeV})^2$ < 0 and $C_9^{\mu} = -C_9$

we can express the coefficient of the coefficient G ^{, as function} of the contract of the co Could originate from massive Z' model with couplings **Could originate from massive 2 model with couplings** Could originate from massive Z' model with couplings *Could originate from massive Z' model with couplings*

$$
\mathcal{L} \supset Z_{\mu} \left(g_{bb} \overline{b}_L \gamma^{\mu} b_L + g_{\mu\mu} \overline{\mu}_L \gamma^{\mu} \mu_L \right)_{V_{ts} \sim -0.04}
$$
\n
$$
\sum_{\substack{\psi_L \\ \psi_L \\ \psi_L \sim \psi_L}} G_{bs\mu} = -\frac{g_{bs} g_{\mu\mu}}{M_{Z'}^2} = -\frac{V_{ts} g_{bb} g_{\mu\mu}}{M_{Z'}^2} \approx \frac{1}{(31.5 \text{ TeV})^2}.
$$
\n
$$
\frac{g_{bb} g_{\mu\mu}}{M_{Z'}^2} \approx \frac{1}{(6.4 \text{ TeV})^2} \text{ RK, RK*}
$$
\n
$$
\text{Comment on signs:} \quad g_{bb}, g_{\mu\mu} > 0, \quad g_{bs} = g_{bb} V_{ts} < 0
$$

EffectiveZ' couplings non-zero charge under the associated *U*(1)⁰ gauge group,

 $\sqrt{2}$ $\langle \phi_i^{\intercal} \rangle$ $\Lambda^{\prime\psi}_{i.r}$ $\left\langle \frac{\partial \phi}{\partial t} \right\rangle^n \left\langle \frac{\partial \phi}{\partial t} \right\rangle^n$ $\langle \phi_j \rangle$ $\Lambda^{\prime\psi}_{j,\eta}$ $\left(\frac{\phi_j}{\psi}\right)^m \left(\frac{m_j}{m_j}\right)^m$

 $g'Z'_\mu \psi^\dagger_i \gamma^\mu \psi_j$

Z' couplings small due to powers of ratios $\langle \phi \rangle$ Λ ϕ is the various ϕ $\varphi \cdot \phi \cdot \varphi$ of ratios λ

which carries $U(1)'$ charge The model also involves a massive *Z*⁰ under which the three SM families *ⁱ, ^c*

Usual three families do not carry $U(1)$ ' charge but couple to Z' via fourth family mixing the fourth vector-like family has non-zero *U*(1)0 charge, and e
Distribution of *U*(1)0 charge, and equal equal of the *Z*0 coupling may be a *U*(2) coupling may be a *U*(1)0 coupling of the *Z*0 coupling of the *Z*0 cou \boldsymbol{c} co \boldsymbol{z} via fourth family mixing

 ϕ Z^0 $\overline{1}$ t_L *bL* $\bigwedge \qquad \qquad \neg A \qquad \bigwedge \qquad \qquad \neg A \q$ t_L b_L ◆ $\sqrt{T_L}$ *B^L* ◆ ✓*T^L B^L* (T_L) (T_L) (T_L) *B^L* $\left\langle T_L \right\rangle$ $\left\langle T_L \right\rangle$ $\left\langle \overline{T_L} \right\rangle$ *B^L* ◆ M_4^Q $\begin{array}{c} -Q \ 4 \end{array} \hspace{1mm} \begin{array}{c} \c > \ 4 \end{array} \hspace{1mm} M_{4}^Q \end{array}$ "Fermionhohic model" SFK 1706.06100 $\mathcal{L} \supset Z'_\mu$ $(g_{bb}\overline{b}_L\gamma^{\mu}b_L) + g_{\mu\mu}\overline{\mu}_L\gamma^{\mu}\mu_L)$ ϕ $\frac{1}{2}$. P $\frac{1}{\sqrt{2}}$ ϵ and the e ϵ $\left(\frac{t_L}{t_L}\right)$ | $\left(\frac{T_L}{P}\right)$ $\left(\frac{T_L}{P}\right)$ $\left(\frac{T_L}{P}\right)$ $\left(\frac{T_L}{P}\right)$ $\overline{}$ "Fermiophobic model" SFK 1706.06100

R_{K(*)} and the origin of Yukawa couplings like family and Higgs doublets are charged. In addition, we shall go beyond the mass in of Vulzowo couplings AN I ANGEL COMPOND IN IN 1995 WAS SUPERSYMMETRIC. not. However we require two Higgs doublets *Hu, Hd*, both with negative *U*(1)⁰ charge. approximation. SFK 1806.06780

 ψ_i *i* ψ_j^c *i* ψ_j^c ψ_i^c ψ_4^c $\frac{c}{4}$ $\qquad \overline{\psi^c_4}$ *H* $M_{4}^{\psi^{c}}$ 4 **i** ψ_j^c **i** ψ_i **i** M_4 **i** ψ_j^c ψ_i^c ϕ *H* M_{4}^{ψ} $\overline{\psi_4}$ ψ_4 π^{ψ} / ϕ in the model to the mass in the mass $\omega_j \propto \frac{1}{\sqrt{2}} \sqrt{2\pi}$ \mathcal{M}^{φ} couplings and \mathcal{M}^{φ} and \mathcal{M}^{φ} are \mathcal{M}^{φ} ^{2.2} SFK 1806.06780
 "Fermiophobic model" Ferretti, SFK, Romanino hep-ph/0609047 *ijH ⁱ ^c ^j* are forbidden for *i, j* = 1*,...* 3 (since *H*) e↵ective 3 ⇥ 3 Yukawa couplings may be generated by the two 1 and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{\psi_i}{\psi_i}$ in $\frac{\psi_i}{\psi_i}$ in $\frac{\psi_i}{\psi_i}$ in $\frac{1}{\psi_i}$ $x_j^{\psi^c}$ $\int\limits_{j}^{\psi^{\circ}}\langle\phi\rangle$ $M_{4}^{\psi^{c}}$ $y^{\psi}_{i4}H\psi_i\psi^c_j +$ $x_i^{\psi}\langle \phi \rangle$ M_{4}^{ψ} $y_{4j}^{\psi}H\psi_{i}\psi_{j}^{c}$ $\frac{c}{j}$ Ferretti, SFK, Romanino hep-ph/0609047 Yukawas

Instead such couplings are forbidden by the gauged *U*(1)⁰ under which the fourth vector-

Finale

The Flavour Problem

- Not going away biggest problem of SM ?
- More interesting since neutrino mass & mixing

Theories of Flavour near Planck Scale

- Well motivated by SUSY GUTs
- Include discrete family symmetry from orbifolding
- Many possibilities hard to test (but Littlest Seesaw)
- Need to discover SUSY!

Theories of Flavour near Electroweak scale

- Motivated by anomalies in B physics
- Many phenomenological constraints
- Models under construction