Southampton elusives invisiblesPlus School of Physics and Astronomy

Theories of Flavour From the Planck Scale to the Electroweak Scale

Steve King

NExT Meeting, Southampton, 7th November, 2018

Prelude

The Flavour Problem

Theories of Flavour with effective Yukawa couplings

The Standard Model

has flavour problem...

The Flavour Problem

Angles and CP

	$ heta_{12}$	θ_{23}	$ heta_{13}$	δ
Quarks	$\underset{\pm 0.1^{\circ}}{13^{\circ}}$	$2.4^{\circ}_{\scriptscriptstyle{\pm 0.1^{\circ}}}$	$\underset{\pm 0.05^{\circ}}{0.2^{\circ}}$	$70^{\circ}_{\scriptscriptstyle{\pm5^{\circ}}}$
Leptons	$34^{\circ}_{\scriptscriptstyle{\pm1^{\circ}}}$	$45^\circ_{\pm 5^\circ}$	$8.5^{\circ}_{\pm 0.15^{\circ}}$	-130^{o}

Yukawa couplings

 $y_{ij}H\psi_i\psi_j^c$

Why so small (apart from top quark)?

Effective Yukawa couplings

m

$\left(\frac{\phi_i}{\lambda_{i,n}^\psi}\right)$	$ \left\{ \begin{array}{c} \left\langle \phi_{j} \right\rangle \\ \frac{\psi^{c}}{\Lambda_{j,m}^{\psi^{c}}} \right\} $
\mathcal{I}_i	ψ^c_j
p	ϕ

 $H\psi_i\psi_j^c$

Yukawas small due to powers of ratios

Flavour scales can be from the Planck scale to electroweak scale

Keepingfixedratios

SUSY GUTs suggest high scale theory of flavour

Phenomenological hints from B physics suggest low scale theory of flavour

Part I

SUSY GUTs of Flavour

High scale theories of flavour

SU(5) GUT

Georgi, Glashow 1974

Right-handed neutrino is optional singlet

For references see review SFK 1701.04413

GUTs with flavour symmetry

$G_{ m GUT}$	$SU(2)_L \times U(1)_Y$	SU(5)	PS	SO(10)
G_{FAM}				
S_3	[29]			[142]
A_4	[30, 34, 51, 53, 64, 143 - 145]	[146-149]	[68, 150, 151]	
T'	[152]	[153]		
S_4	[31, 51, 53, 145, 155]	[156, 157]	[154]	[158]
A_5	[53, 159]	[160]		
T_7	[161, 162]			
$\Delta(27)$	[163]			[164]
$\Delta(96)$	[165, 166]	[167]		[168]
D_N	[169]			
Q_N	[170]			
other	[171]	[172]	[173]	

Flavour Symmetry

Björkeroth, de Anda, de Medeiros Varzielas, SFK 1503.03306, 1505.05504

SU(5)xA₄ predicts Yukawa matrices

$$Y^{u} = \begin{pmatrix} u_{11}|\tilde{\xi}^{4}| & u_{12}|\tilde{\xi}^{3}| & u_{13}|\tilde{\xi}^{2}| \\ u_{12}|\tilde{\xi}^{3}| & u_{22}|\tilde{\xi}^{2}| & u_{23}|\tilde{\xi}| \\ u_{13}|\tilde{\xi}^{2}| & u_{23}|\tilde{\xi}| & u_{33} \end{pmatrix} \xrightarrow{\text{arg det (YuYd)=0}} Y^{d} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{4}d_{11}\frac{|v_{\xi}v_{e}|}{|v_{\Lambda_{24}}|^{2}} & d_{12}\frac{|v_{\xi}v_{\mu}|}{|v_{\Lambda_{24}}|^{2}}e^{i\zeta} & 0 \\ 0 & 2d_{22}\frac{|v_{H_{24}}v_{\mu}|}{M^{2}} & 0 \\ 0 & 0 & d_{33}\frac{|v_{\tau}|}{M} \end{pmatrix}$$

Up matrix has small mixing and no phases

Down matrix gives Cabibbo mixing and CP phase

$$m_D = \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix} \quad M_R = \begin{pmatrix} M_{\rm atm} & 0 \\ 0 & M_{\rm sol} \end{pmatrix}$$

Littlest Seesaw with 4 parameters $Y^{e} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{9}d_{11}\frac{|v_{\xi}v_{e}|}{|v_{\Lambda_{24}}|^{2}} & 0 & 0 \\ d_{12}\frac{|v_{\xi}v_{\mu}|}{|v_{\Lambda_{24}}v_{H_{24}}|}e^{i\zeta} & 9d_{22}\frac{|v_{H_{24}}v_{\mu}|}{M^{2}} & 0 \\ 0 & 0 & d_{33}\frac{|v_{\tau}|}{M} \end{pmatrix}$ No LH charged lepton mixing to leading order SFK, Molina Sedgwick, Rowley 1808.01005

The Fitting high-energy Littlest Seesaw parameters using low-energy neutrino data and leptogenesis

Predicts: 4 real input parameters $m_D = \begin{pmatrix} 0 & 0 \\ a & 3b \\ a & b \end{pmatrix} \quad M_R = \begin{pmatrix} M_{\text{atm}} & 0 \\ 0 & M_{\text{sol}} \end{pmatrix}$ 1.10^{-1} 70 60 1.0850 M_{sol}/10¹⁰GeV 1.04 $\chi^2/d.o.f. = 2.07/3$ 40 $\cdot 30^{\Delta \chi^2}$ 20 1.02 10 1.00 1.325 1.350 1.315 1.400 $M_{atm}/10^{13}$ GeV 1.300

3 neutrino masses (m₁=0), 3 mixing angles, **1** Dirac CP phase, 2 Majorana phases (1 zero) **1 BAU parameter Y**_B = 10 observables

of which 7 are constrained

	F	Pred	icte	d	1σ	rang	e		
	$\theta_{12}/^{\circ}$			$34.291 \rightarrow 34.379$					
	$ heta_{13}/^{\circ}$			$8.384 \rightarrow 8.784$					
	$\theta_{23}/^{\circ}$			44	.044	→ 44.43	4		
	Δm_{12}	$2^2/10^{-1}$	$^{5}\mathrm{eV}^{2}$		7.058 -	$\rightarrow 7.61$	5		
	$\Delta m_{31}^2 / 10^{-3} \mathrm{eV}^2$			$2.435 \rightarrow 2.562$					
	$\delta/^{\circ}$			$-93.708 \rightarrow -92.180$					
-	$Y_B/1$	0^{-10}			0.838 -	$\rightarrow 0.88$	1		
-	·	Ex		ent	fit!				
	A.,	Δ.,	Δ.,	m	m	۵	V-		

1.0

0.8

0.6

0.4

0.2

0.0

 χ^{7}

Jordan Bernigaud, Bjorn Herrmann, SFK, Samuel J. Rowley (in progress)

SUSY SU(5)xA₄ @LHC

SUSY breaking masses at M_{GUT}

$$\begin{split} m_F &= m_{\tilde{D}_i^c} = m_{\tilde{L}_i} = m_{H_u} = m_{H_d} ,\\ m_{T1} &= m_{\tilde{Q}_1} = m_{\tilde{U}_1{}^c} = m_{\tilde{E}_1{}^c} ,\\ m_{T2} &= m_{\tilde{Q}_2} = m_{\tilde{U}_2{}^c} = m_{\tilde{E}_2{}^c} ,\\ m_{T3} &= m_{\tilde{Q}_3} = m_{\tilde{U}_3{}^c} = m_{\tilde{E}_3{}^c} . \end{split}$$

Light charginos, neutralinos and RH smuons

	Parameter/Observable	Scenario 1	Scenario 2		Parameter/Observable	Scenario 1	Scenario 2
	m_F	5000	5000		m_h	126.7	127.3
cale	m_{T_1}	5000	5000		$m_{\widetilde{g}}$	5570.5	5625.7
⊡ N	m_{T_2}	200	233.2	Ň	$m_{\widetilde{\mu}_L}$	4996.7	4997.5
GU	m_{T_3}	2995	2995	JSSe	$m_{\widetilde{\mu}_R}$	102.1	254.4
at	a_{33}^{TT}	-940	-940	m	$m_{\widetilde{\chi}_1^0}$	94.6	250.4
cers	a_{33}^{FT}	-1966	-1966	ical	$m_{\widetilde{\chi}_2^0}$	323.6	322.0
met	M_1	250.0	600.0	hys	$m_{\widetilde{\chi}^0_2}$	2248.8	2331.1
ara	M_2	415.2	415.2	L L	$m_{\widetilde{\mathbf{v}}}^{\alpha}$	2248.8	2331.2
	M_3	2551.6	2551.6		$m_{\widetilde{\mathbf{x}}^{\pm}}$	323.8	322.2
MF	M_{H_u}	4242.6	4242.6		$m_{\tilde{z}^{\pm}}^{\chi_1}$	2249.8	2332.2
	M_{H_d}	4242.6	4242.6		χ_2 $\Omega_{\sim 0} h^2$	0.116	0.120
	aneta	30	30		$-Proton / 10^{-14} mb$	0.110	
	$\mid \qquad \mu$	-2163.1	-2246.8		$\frac{\sigma_{SI}}{N} = \frac{14}{2}$	2.987	
	· ·				$\sigma_{SI}^{Neutron}/10^{-14} pb$	3.249	0.986

Flavour Violating Parameters at MGUT

Parameters	Scenario 1	Scenario 2	Most constraining obs. 1	Most constraining obs. 2
$(\delta^T)_{12}$	[-0.015, 0.015]	$[-0.12, 0.12]^{\dagger}$	$\mu \to 3e, \mu \to e\gamma, \Omega_{\tilde{\chi}_1^0} h^2$	$\Omega_{\tilde{\chi}_1^0} h^2, \mu o e\gamma$
$(\delta^T)_{13}$]-0.06, 0.06[$[-0.3, \ 0.3]^{\dagger}$	$\Omega_{ ilde{\chi}_1^0} h^2$	$\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^T)_{23}$	$[0, 0]^*$	$[-0.1, 0.1^{\dagger}]$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to 3e, \mu \to e\gamma$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to 3e, \mu \to e\gamma,$
$(\delta^F)_{12}$	[-0.008, 0.008]	$[-0.015, 0.015]^{\dagger}$	$\mu \to 3e, \ \mu \to e\gamma$	$\mu \to 3e, \ \mu \to e\gamma$
$(\delta^F)_{13}$]-0.01, 0.01[$[-0.15, 0.15]^{\dagger}$	$\mu \to e \gamma$	$\mu \to 3e, \ \mu \to e\gamma$
$(\delta^F)_{23}$]-0.015, 0.015[$[-0.15, 0.15]^{\dagger}$	$\mu \to e\gamma, \Omega_{\tilde{\chi}_1^0} h^2$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to e\gamma, \mu \to 3e$
$(\delta^{TT})_{12}$	$[-3, 3.5] \times 10^{-5}$	$[-1, 1.5]^{\dagger} \times 10^{-3}$	prior	prior, $\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{TT})_{13}$	$]-6, 7] \times 10^{-}5$	$[-4, 2.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{TT})_{23}$]-0.5, 4[$\times 10^{-5}$	$[-0.25, 0.2]^{\dagger}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$	prior, $\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{12}$	[-0.0015, 0.0015]	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$	$\mu \to 3e, \ \Omega_{\tilde{\chi}^0_1}h^2, \ \mu \to e\gamma$
$(\delta^{FT})_{13}$]-0.002, 0.002[$[-5, 5] \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$	$\Omega_{\tilde{\chi}^0_1} h^2, \mu \to 3e, \mu \to e\gamma$
$(\delta^{FT})_{21}$	$[0,0]^*$	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	prior	$\Omega_{\tilde{\chi}_1^0} h^2$, prior
$(\delta^{FT})_{23}$]-0.0022, 0.0022[$[-6, 6]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$	$\mu \to 3e, \ \Omega_{\tilde{\chi}^0_1}h^2, \ \mu \to e\gamma$
$(\delta^{FT})_{31}$]-0.0004, 0.0004[$[-2, 2]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$	$\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{32}$	$[0,0]^*$	$[-1.5, 1.5] \times 10^{-4}$	prior	$\Omega_{ ilde{\chi}_1^0} h^2$

Part II

Phenomenological hints from B physics

Low scale theories of flavour

- $b \rightarrow sl^+l^-$ transitions are rare in the SM (no tree level contributions: GIM, CKM, in some cases helicity suppressed)
- ideally suited for indirect New Physics searches (indirectly sensitive to energy scales O(100TeV))

LFU tests with $B \rightarrow K(^*)\mu\mu$ and $B \rightarrow K(^*)ee$ decays: R(K) and R(K*)

 Theoretical uncertainties on the exclusive B→K(*)Il branching fractions are reduced to a per-mille level in ratios (hadronic effects cancel):

$$R(K) = \frac{B^+ \to K^+ \mu^+ \mu^-}{B^+ \to K^+ e^+ e^-} \quad R(K^*) = \frac{B^0 \to K^{*0} \mu^+ \mu^-}{B^0 \to K^{*0} e^+ e^-}$$

- SM, R(K) and $R(K^*)$ expected to be close to unity.
- Sensitive to new neutral and heavy gauge bosons, lepto-quarks, Z' models.

R(K) and R(K*) results

LHCb focusses on the q^2 regions with reliable theoretical predictions and small contributions from the resonant modes. Precision limited by statistics.

Siim Tolk

Possible operators for RK, RK*

$$\mathcal{L}_{b\to s\mu\mu}^{\rm NP} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\delta C_9^{\mu} O_9^{\mu} + \delta C_{10}^{\mu} O_{10}^{\mu}\right) + \text{h.c.}$$

Altmannshofer, Stangl, Straub '17

$$O_9^{\mu} = \frac{\alpha}{4\pi} (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \mu) ,$$

$$O_{10}^{\mu} = \frac{\alpha}{4\pi} (\bar{s}_L \gamma_{\mu} b_L) (\bar{\mu} \gamma^{\mu} \gamma_5 \mu) .$$

Assuming LH currents and LFU observables

 $(\bar{s}_L \gamma_\mu b_L)(\bar{\mu}_L \gamma^\mu \mu_L)$

Z' interpretation of RK, RK*

 $\Delta \mathcal{L}_{\text{eff}} \supset G_{bs\mu} (\bar{b}_L \gamma^\mu s_L) (\bar{\mu}_L \gamma_\mu \mu_L) + \text{h.c.}, \qquad G_{bs\mu} \approx \frac{1}{(31.5 \text{ TeV})^2}.$ $G_{bs\mu} > 0 \quad \text{matches} \quad C_9^\mu < 0 \quad \text{and} \quad C_9^\mu = -C_{10}^\mu$

Could originate from massive Z' model with couplings

EffectiveZ' couplings

 $\left(\frac{\langle \phi_i^{\dagger} \rangle}{\Lambda_{i,n}^{\prime \psi}}\right)^n \left(\frac{\langle \phi_j \rangle}{\Lambda_{j,m}^{\prime \psi}}\right)^m g^\prime Z_{\mu}^{\prime} \psi_i^{\dagger} \gamma^{\mu} \psi_j$

Z' couplings small due to powers of ratios

which carries U(I)' charge

Usual three families do not carry U(I)' charge but couple to Z' via fourth family mixing

SFK 1706.06100 "Fermiophobic model" $\mathcal{L} \supset Z'_{\mu} \left(g_{bb} \bar{b}_L \gamma^{\mu} b_L + g_{\mu\mu} \bar{\mu}_L \gamma^{\mu} \mu_L \right)$ t_L t_L br. $\begin{pmatrix} T_L \\ B_L \end{pmatrix}$ $\begin{pmatrix} T_L \\ B_I \end{pmatrix}$ $\left(\frac{T_L}{B_L}\right)$

RK(*) and the origin of Yukawa couplings

Feri	mior	bhob	ic m	ode
Field	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'
Q_i	3	2	1/6	0
u_i^c	$\overline{3}$	1	-2/3	0
d_i^c	$\overline{3}$	1	1/3	0
L_i	1	2	-1/2	0
e_i^c	1	1	1	0
$ u_i^c $	1	1	0	0
Q_4	3	2	1/6	1
u_4^c	$\overline{3}$	1	-2/3	1
d_4^c	$\overline{3}$	1	1/3	1
L_4	1	2	-1/2	1
e_4^c	1	1	1	1
ν_4^c	1	1	0	1
$\overline{Q_4}$	$\overline{3}$	$\overline{2}$	-1/6	-1
$\overline{u_4^c}$	3	1	2/3	-1
$\overline{d_4^c}$	3	1	-1/3	-1
$\overline{L_4}$	1	$\overline{2}$	1/2	-1
$\overline{e_4^c}$	1	1	-1	-1
$\overline{\nu_4^c}$	1	1	0	-1
ϕ	1	1	0	1
H_u	1	2	1/2	-1
$ H_d$	1	2	-1/2	-1

, Yukawas generated via mixing with fourth family Ferretti, SFK, Romanino hep-ph/0609047 $\xrightarrow{H} \phi \qquad \phi \qquad H$ $\xrightarrow{\psi_i} M_4^{\psi^c} \qquad \psi_i \qquad \psi_i \qquad M_4^{\psi} \qquad \psi_i \qquad$

RK	*) ar	ht h	ψ_i	M	$M_4^{\psi} \stackrel{\geq}{\geq} M_4^{\psi} \stackrel{\uparrow}{\downarrow} \psi_j \qquad \qquad$
"Fer	SFK 180	06.06780 0600b	ic m	$\overline{\psi_4}$	ψ_4 ψ_4 $\overline{\psi_4}$
$ \begin{array}{c} \text{Field} \\ Q_i \\ u_i^c \\ d_i^c \\ L_i \\ e_i^c \end{array} \end{array} $	$ \begin{array}{r} SU(3)_c \\ 3 \\ \overline{3} \\ 1 \\ 1 \\ $	$SU(2)_L$ 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{r} U(1)_Y \\ \hline $	U(1)' 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{matrix} \iota \\ \nu_i^c \\ Q_4 \\ u_4^c \\ d_4^c \\ L_4 \\ e_4^c \\ e_4^c \end{matrix}$	$ \begin{array}{r} 1 \\ \overline{3} \\ \overline{3} \\ 1 \\ 1 \end{array} $	1 2 1 1 2 1 1	$\begin{array}{r} 0 \\ \hline 1/6 \\ -2/3 \\ 1/3 \\ -1/2 \\ 1 \end{array}$	0 1 1 1 1 1 1	$\frac{1}{2} \frac{x_{j}^{\psi^{c}}\langle\phi\rangle}{M_{4}^{\psi^{c}}}y_{i4}^{\psi}H\psi_{i}\psi_{j}^{c} + \frac{x_{i}^{\psi}\langle\phi\rangle}{M_{4}^{\psi}}y_{4j}^{\psi}H\psi_{i}\psi_{j}^{c}$ $\frac{\mathbf{Z}' \text{ couplings generated via mixing with fourth family}}{\mathbf{X}_{4}^{FK}}$
$ \frac{\nu_4^c}{\overline{Q_4}} \\ \frac{\overline{Q_4}}{\overline{d_4^c}} \\ \frac{\overline{d_4^c}}{\overline{d_4^c}} \\ \frac{\overline{L_4}}{\overline{e_4^c}} \\ \frac{\overline{e_4^c}}{\overline{e_4^c}} \\ \frac{\overline{e_4^c}}{$	$ \begin{array}{r} 1 \\ \overline{3} \\ 3 \\ 1 \\ 1 \\ 1 1 1 1 1 $		$ \begin{array}{r} 0 \\ $	$ \begin{array}{r} 1 \\ -1 \\ $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c} \nu_4^c \\ \phi \\ H_u \\ H_d \end{array} $	1 1 1 1 1	1 1 2 2	$ \begin{array}{r} 0 \\ \hline 0 \\ 1/2 \\ -1/2 \\ \end{array} $	-1 1 -1 -1	$ = \frac{Z' \text{ couplings}}{\frac{x_i^{\psi}\langle\phi\rangle}{M_4^{\psi}} \frac{x_j^{\psi}\langle\phi\rangle}{M_4^{\psi}} g' Z'_{\mu} \psi_i^{\dagger} \gamma^{\mu} \psi_j + \frac{x_i^{\psi^c}\langle\phi\rangle}{M_4^{\psi^c}} \frac{x_j^{\psi^c}\langle\phi\rangle}{M_4^{\psi^c}} g' Z'_{\mu} \psi_i^{c\dagger} \gamma^{\mu} \psi_j^c} $

Finale

The Flavour Problem

- Not going away biggest problem of SM ?
- More interesting since neutrino mass & mixing

Theories of Flavour near Planck Scale

- Well motivated by SUSY GUTs
- Include discrete family symmetry from orbifolding
- Many possibilities hard to test (but Littlest Seesaw)
- Need to discover SUSY!

Theories of Flavour near Electroweak scale

- Motivated by anomalies in B physics
- Many phenomenological constraints
- Models under construction