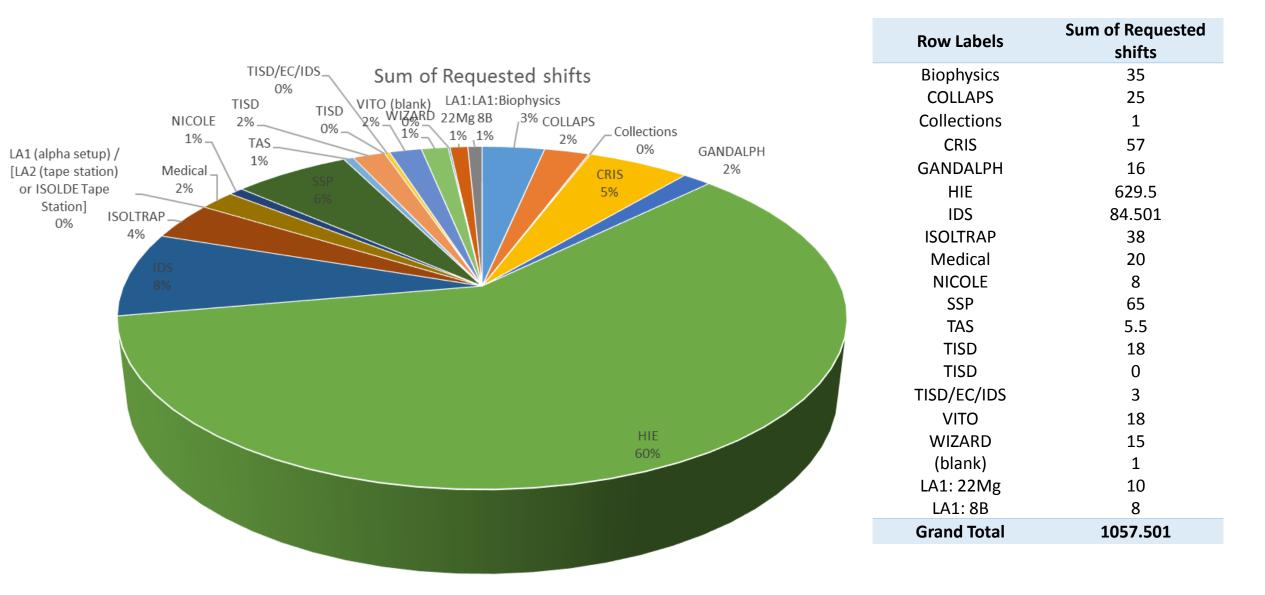
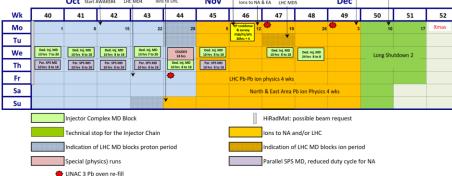
ISOLDE physics coordinator report: ISCC 6th November 2018

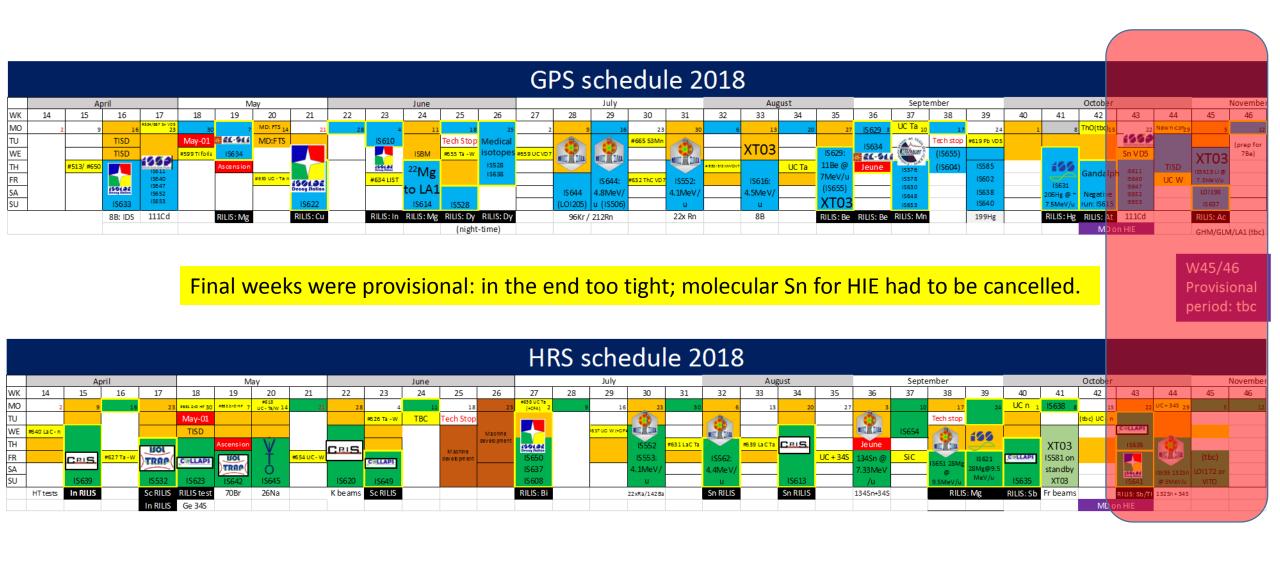


- Summary of 2018: proton and winter physics schedules
- Safety/training
- Technicians
- Publications

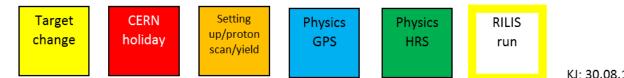

Summary of beam requests 2018

Protons available for physics to ISOLDE from 9th April – 12th November 2018. (no extension possible) 1 week less physics with protons than 2017 217 days compared to 224

HIE ISOLDE was ready from 9th July after 90 days of LE physics

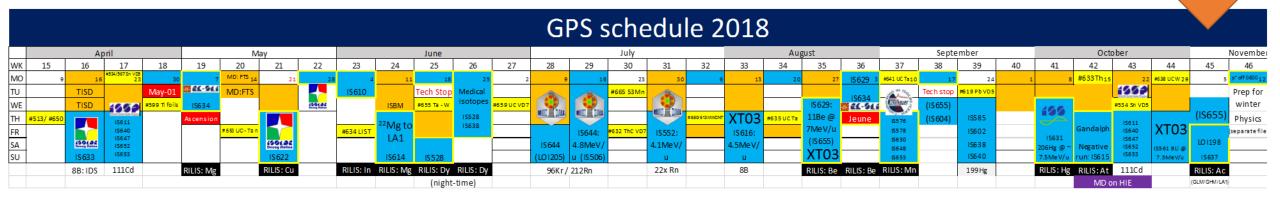

HIF: Started with a Coulomb excitation block then focused on the reaction experiments More setup time often needed for these plus more varied setups.

All three HIE beamlines ISS in use e.g. calibrating/commissioning while Miniball ran CE, installations ongoing at XT03.


Low energy runs allowed for some breathing space (and exchange of EBIS cathode). To allow for best use of machine, some experiments ran in parallel/invisible mode e.g. Solid state physics: one dedicated run in 2018 i.e. blocking CBL and with new target.

Focus on LOIS at end of year: looking forward.... Winter physics programme to start in Week 46 for HIE (x2) and CRIS

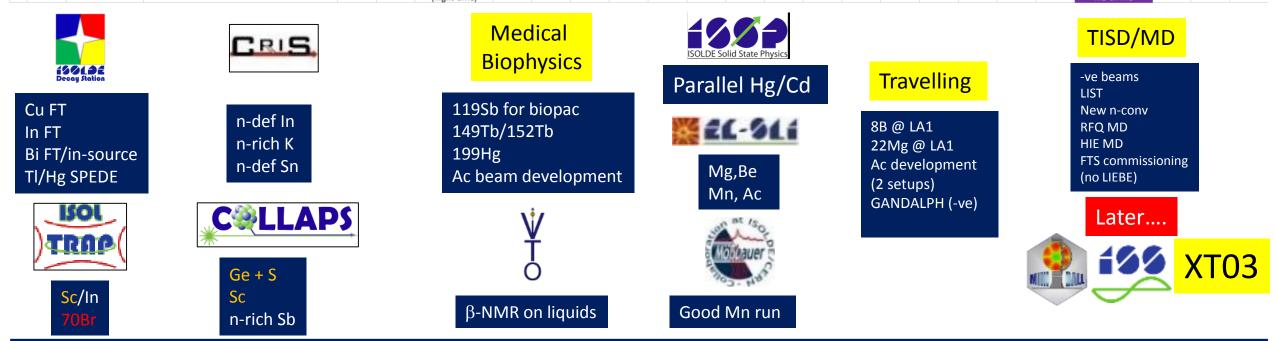
ISOLDE Schedule 2018: weeks 15 – 46



KJ: 30.08.18

Final ISOLDE schedule

														Η	RS s	sche	edu	le 2	018	3												
		Ap	ril			N	lay				June					July				Au	gust			Septe	mber			Octo	ber			November
WK	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
MO	9	16	23	#651 2r0 HP 3.0	#652 ZrO HP 7	#618 UC-Ta/W 14	21	21	3 4	11	18	25	#658 UC Ta (+CF4) 2	ç	16	23	30	6	13	20	27	3	10	17	24	#662 UC n ₁	IS638 ₈	15	22	# 642 UC n(ew)- conv	TISD ₅	p* off050012
ΤU				May-01					#626 Ta - W	TBC	Tech Stop													Tech stop				(tbc) UC	w.	TISD	TISD	Prep for
WE				TISD								Machine			637 UC W (+CF4								IS654		199				Ť		#672 CaO VD7	winter
TH			JOU		Ascension	Ŵ		CRIS			Machine	development	1991 32 Decay Ballies			IS552	#631 LaC Ta		#639 LaC Ta			Jeune			\sim			tuning IDS	IS 645			Physics
FR	CRIS,	#527 Ta -W	TRAP	CHLLAPS	JOU	Ť	#654 UC - W	<u> </u>	CHLLAPS		development		IS650			IS553:		IS562:		CRIS.	#643UC+34	134Sn @	#623 SiC	ISCE1 20Ma	IS 621	CHLLAPS		νιτο	IS 641			(separate file)
SA SU					TRAP	0			Circuit /				IS637			4.1MeV/		4.4MeV/				7.33MeV		- @	28Mg@9.5				1561.64		WISArD	
SU	IS639		IS532	IS623	IS642	IS645		IS620	IS649				IS608			u		u		IS613		/u		9.5MeV/u	MeV/u	IS635			end Satnight)	LOI172	
	In RILIS		Sc RILIS	RILIS test	70Br	26N a		K beams	Sc RILIS				RILIS: Bi			22xRa/142Ba		Sn RILIS		Sn RILIS		134Sn+34S	S	RILIS	S: Mg	RILIS: Sb			RILIS: TI		RILIS: for TISD	
(i	#640 LaC - n)		In RILIS	Ge 34S																								MD o	n HIE			



2

GPS schedule 2018

HRS schedule 2018

		Ap	ril			N	ау				June					July				Au	gust			Septe	ember			Octo	ber		I	November
WK	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
MO	9	16	23	#651 2r0 HP 3 0	#652 ZrO HP 7	#618 UC-Ta/W 14	21	2.8	4	11	18	25	#658 UC Ta (+CF4) 2		16	23	30	6	13	20	27	3	10	17	24	#662 UC n ₁	IS638 ₈	15	22	# 642 UC n(ew)- conv	TISD ₅	p* off0600 _{1.2}
TU				May-01					#626 Ta - W	твс	Tech Stop													Tech stop				(tbc) UC	NZ.	TISD	TISD	Prepfor
WE				TISD								Machine			637 UC W (+OF4								IS654	(199				Ť		#672 CaO VD7	winter
TH			L KOL		Ascension	Ŵ		CRIS			Machine	development	1991 al			IS552	#631 LaC Ta		#639 LaC Ta			Jeune						tuning IDS	IS 645			Physics
FR	CRIS,	#527 Ta -W	TRAP	CILLAPS	ISOL	Ť	#654 UC - W		CIFLLAPS		development		IS650			IS553:		IS562:		CPIS.	#643 UC + 345	134Sn @	#623 SiC		IS 621	CHLLAPS		νіто	IS 641			separate file)
SA					TRAP(Ó			CHLLAPS				IS637			4.1MeV/		4.4MeV/				7.33MeV		@	28Mg@9.5	<u> </u>			154.64		WISArD	
SU	IS639		IS532	IS623	IS642	IS645		IS620	IS649				IS608			u		u		IS613		/u		9.5MeV/u	MeV/u	IS635		(end Satnight		LOI172	
	In RILIS		Sc RILIS	RILIS test	70Br	26N a		K beams	Sc RILIS				RILIS: Bi			22xRa/142Ba		Sn RILIS		Sn RILIS		134Sn+34S		RILI	S: Mg	RILIS: Sb			RILIS: TI		RILIS: for TISD	
	(#640 LaC - n)		In RILIS	Ge 34S																								MD o	n HIE			

HIE-ISOLDE EXPERIMENTS 2018

reaching 9.5 MeV/u with HIE-ISOLDE

Reactions:

@ 4.900 MeV/u (SEC) ¹¹Be(decay) @ 7.498 MeV/u (SEC-TPC) ^{132,134}Sn(*d*,*p*) @ 7.200 MeV/*u* (*Miniball*) • ${}^{28}Mg(t,p)$ @ 9.473 MeV/u (Miniball) • ${}^{28}Mg(d,p)$ @ 9.473 MeV/u (ISS) • 206 Hg(*d*,*p*) @ 7.380 MeV/u (ISS) @ 7.5xx MeV/u (SEC) ⁹Li(*t,p*)

Scattering

chamber (SEC)

XT02

Disappointments: multi nucleon transfer 94Rb and other strong primary beams. Rights have been given. Procedure approved but would have restricted too many other experiments from running/setting up in 2018.

Phase 2 – 2018

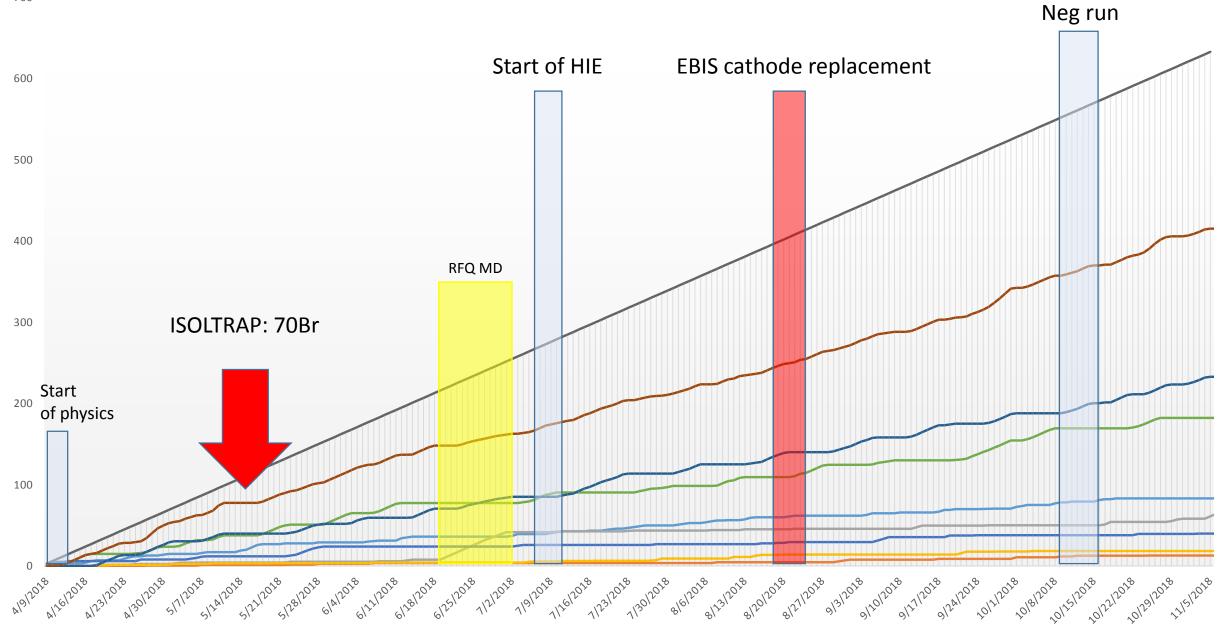
NAL DEL PAR SEA			
XT01	Сс	oulomb excit	tation (Miniball):
		⁹⁶ Kr	@ 5.325 MeV/ <i>u</i>
	•	²¹² Rn	@ 4.355 MeV/ <i>u</i>
			@ 3.824 MeV/u
Miniball	•	²²² Ra	@ 4.305 MeV/ <i>u</i>
	•	²²⁸ Ra	@ 4.310 MeV/ <i>u</i>
	•	¹⁴² Ba	@ 4.190 MeV/ <i>u</i>
	•	²²² Rn	@ 4.230 MeV/ <i>u</i>
SOLDE Solenoidal	•	^{224,226} Rn	@ 5.080 MeV/ <i>u</i>
pectrometer (ISS) ISOLDE Solenoidal	•	¹⁰⁶ Sn	@ 4.404 MeV/ <i>u</i>
Spectrometer			

GPS

_		November				December
	45	46	47	48	49	50
	5	p ⁺ off 0600 12	19	26	3	
		#635 UC Ta				
		хтоз		ХТ03		
	LOI 198 IS637	7Be @ 5MeV/u 1S554	(tbc) 44Ti	44Ti @ 1.4MeV/u IS543		
	RILIS: Ac	RILIS: Be		44Ti (RILIS?)		
(0	GLM/GHM/LA1)					

HRS

		November				December
	45	46	47	48	49	50
	TISD 5	p ⁺ off 0600 <mark>12</mark>	19	26	3	
	TISD					
ŧ	#672 CaO VD7					
		#637 UC				
			CRIS.			
	WISArD					
	LOI172		IS657			
RI	LIS: for TISD		RaF (CRIS)			


Winter physics programme:

7Be @ 5MeV/u to XT03 (similar setup to recently used 9Li run) Target irradiated in past weeks (cold). Be mass marker.

RaF for CRIS: target with CF4 leak irradiated at MEDICIS.

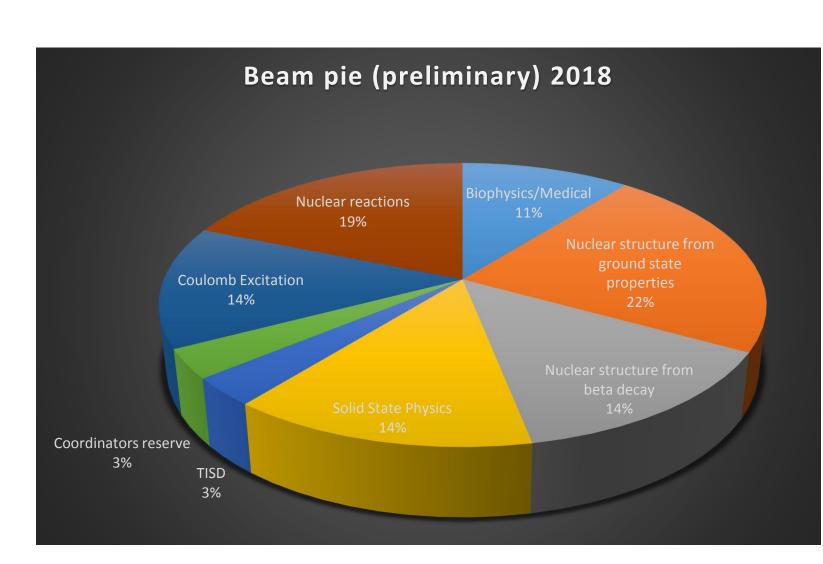
44TI for Edinburgh chamber (similar to 59Cu in 2017). Planning ongoing with PSI for importation of material.

In addition some emittance test requestd by MIRACLS on both HRS and GPS.

Machine problems

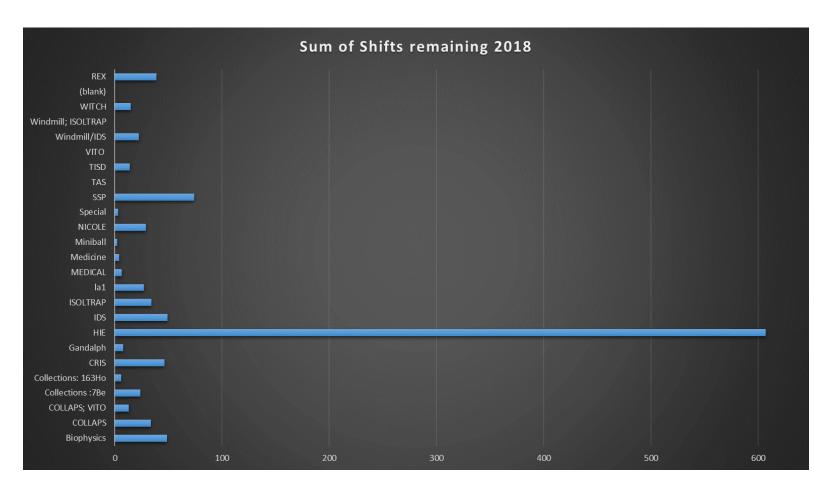
Protons

Physics (GPS)


Physics (HRS)

-----Ideal scenario

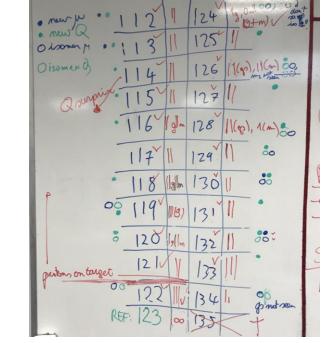
sum of physics


Set up

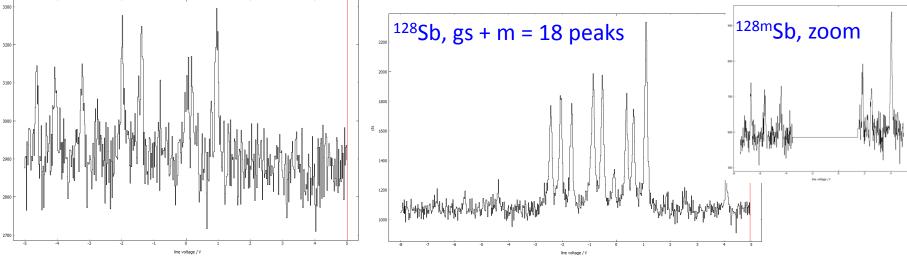
RILIS

	Count of Delivered	
Setup	2018	2018
Biophysics	4	31
COLLAPS	3	35.5
COLLAPS; VITO		
Collections		
:7Be		
Collections:		
163Ho		
CRIS	3	39
Gandalph	1	9
HIE	11	139.5
IDS	5	43
ISOLTRAP	2	17
la1	1	10
MEDICAL	2	18.5
Medicine		
Miniball		
NICOLE	4	2
REX	1	8
Special		<u></u>
SSP	13	64.5
TAS		
TISD		
VITO		
Windmill/IDS		
Windmill;	1	2
ISOLTRAP	1	3
WITCH		
(blank)	A.7	140
Grand Total	47	418

Row Labels	Sum of Shifts remaining (Feb 2018)	Sum of Delivere d 2018	Count of Delivere d 2018	Sum of Shifts remaining 2018
Biophysics	79.5	31	4	48.5
COLLAPS	69	35.5	3	33.5
COLLAPS; VITO	13			13
Collections :7Be	24			24
Collections: 163Ho	6			6
CRIS	85.5		3	46.5
Gandalph	17		1	8
HIE	746.5	139.5	11	607
IDS	92		5	49
ISOLTRAP	51	17	2	34
la1	37	10	1	27
MEDICAL	25	18.5	2	6.5
Medicine	4			4
Miniball	2			2
NICOLE	29			29
Special	3			3
SSP	138.5	64.5	13	74
TAS	11.5			0
TISD	14			14
VITO	0			0
Windmill/IDS	22.5			22.5
Windmill;				
ISOLTRAP	3		1	0
WITCH	15			15
(blank)	0			0
REX	47		1	39
Grand Total	1535	418	47	1105.5

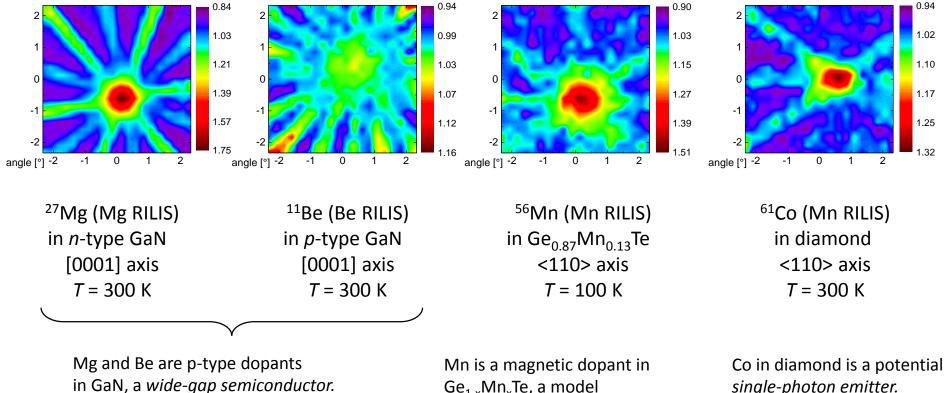


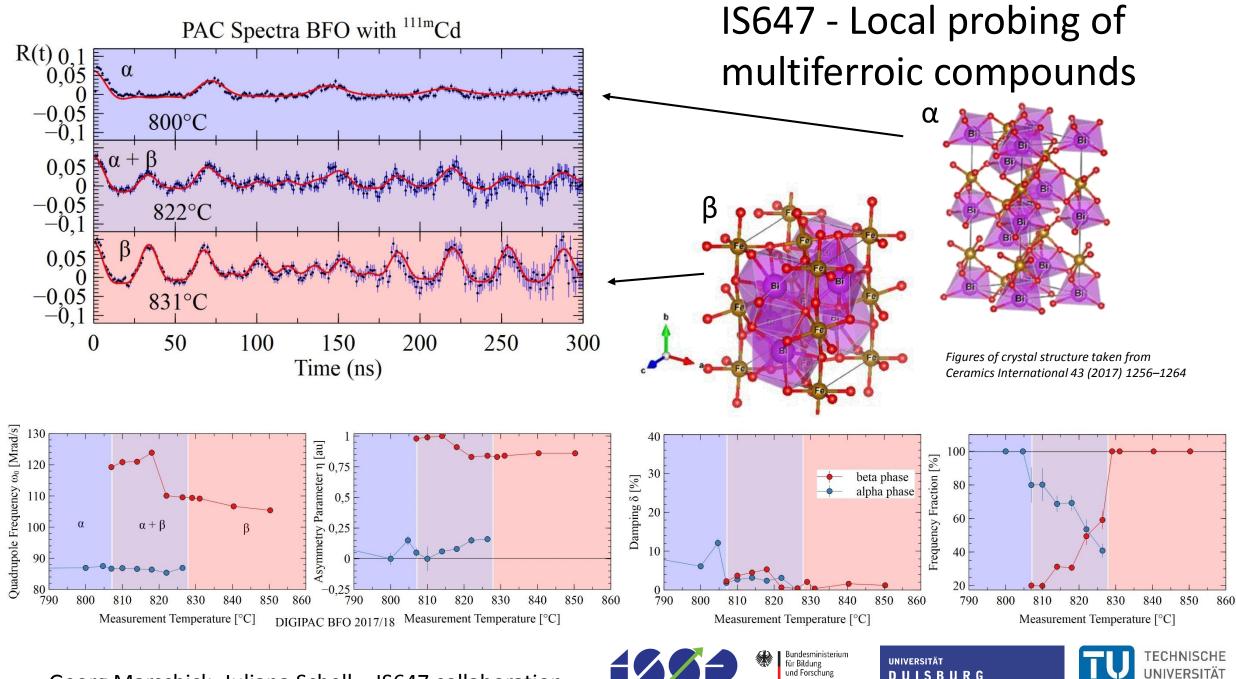
NOTE: preliminary counting; includes RB recommendation that TAS experiments be closed from INTC-59



Sb (Z = 51) isotopes across N = 82

- ✓ $^{112-134}$ Sb (N = 61 83): **23** isotopes incl. several isomers
 - O Many new moments and radii: large part of physics goal reached
 - © Smooth ISOLDE/RILIS operation
 - The interesting ¹³⁵Sb (probably) out of reach considering the contamination level/available shifts*
- Second element using frequency quadrupling (217 nm)
- 2nd Sb run canceled in favour of the VITO run, compensation with ~2 additional shifts in 1st run


¹³⁴Sb, ~1 shift of statistics

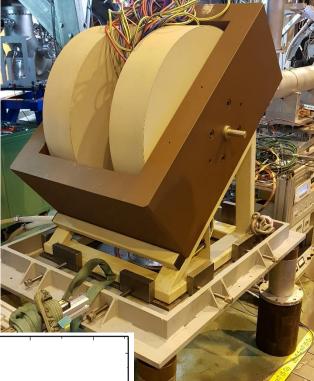

Candidate for LIST after LS2? (impossible with present front end)

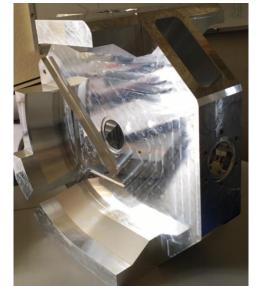
Emission channeling (EC-SLI)

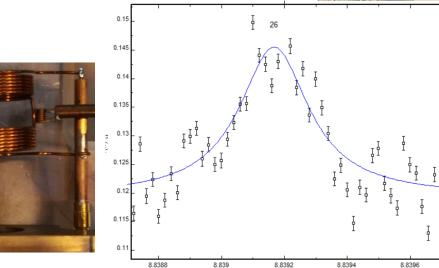
Lattice location of dopant atoms in functional electronic materials

Continuation of our previous work [1] Application context: **Optoelectronics** $Ge_{1-x}Mn_xTe$, a model multiferroic Rashba semiconductor. Application context: **Spintronics** Co in diamond is a potential single-photon emitter. Application context: Quantum information

Georg Marschick, Juliana Schell – IS647 collaboration

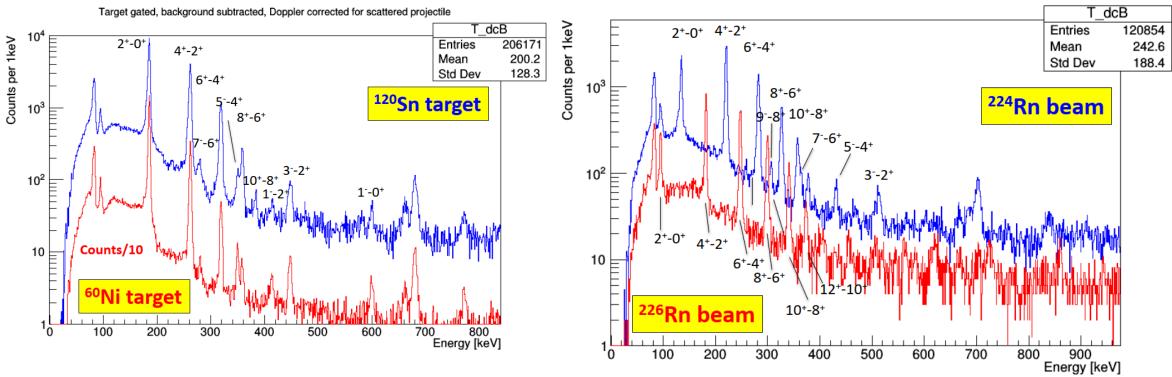

ISOLDE Solid State Physics


D U I S B U R G E S S E N


WIEN

VITO since last ISCC

- Work on technical improvements since May beamtime
 - More homogenous, stable, and stronger magnet
 - Fitting NMR chamber
 - Fitting transitional field section
 - New NMR system for field readout and stabilization
- Vacuum tests and NMR studies on new solutions and DNA samples
 - 17ppm shift for DNA G-quadruplex confirmed in a vacuum-compatible solution
- Beamtime 2 weeks ago
 - Very stable and reliable setup
 - many NMR resonances and relaxation-time data of DNA Gquadruplexes and crown-ether solutions in different solvents


RS-Frequency [MHz]

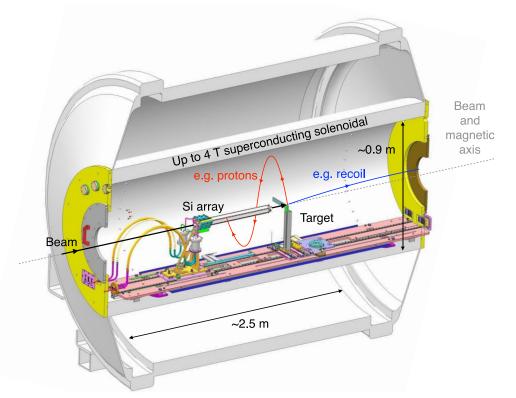
Coulomb excitation of Ra/Rn isotopes: IS552

²²²Rn beam

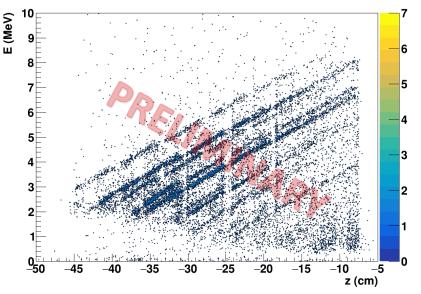
¹²⁰Sn target

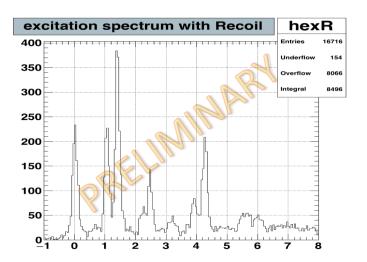
Target gated, background subtracted, Doppler corrected for scattered projectile

Heaviest isotopes post-accelerated at ISOLDE (and beyond?) Difficult/busy run with many energy changes and isotopes. Analysis ongoing (and making impressive progress...)

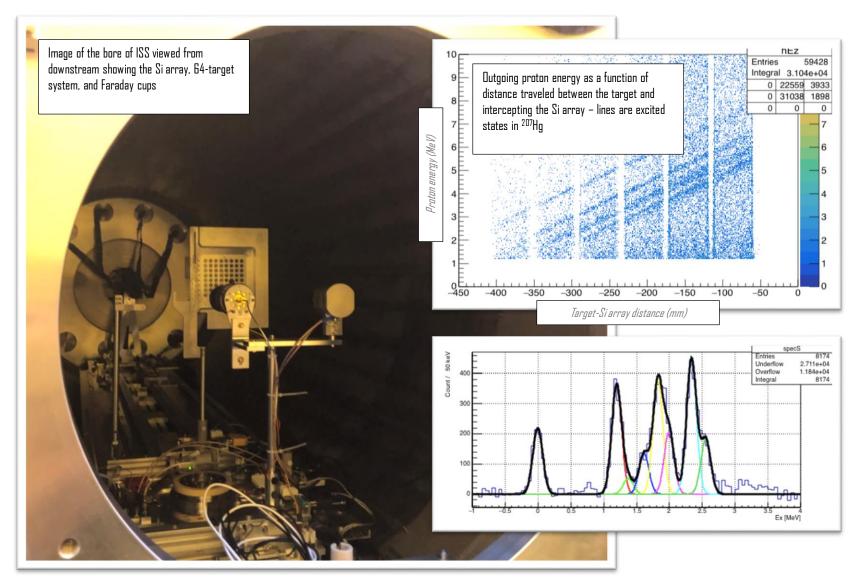

Warsaw TPC chamber: no spectra to show yet: but mid-run celebratory tirimisu

Preliminary data from ISS


Courtesy Dave Sharp

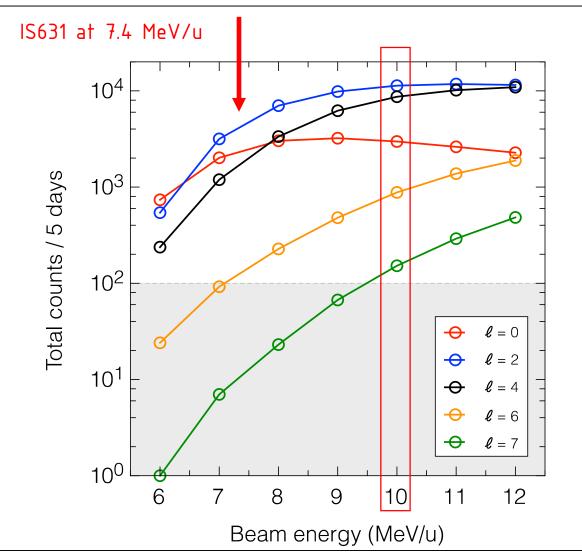

²⁸Mg(d,p)²⁹Mg reaction in ISS with accelerated ²⁸Mg beam at 9.473 MeV/u highest HIE-ISOLDE beam energy ever !

Study bound and unbound quantum states in ²⁹Mg up to 6 MeV. Resolution ~100keV – able to resolve most states of interest


Recoil proton energy versus position on detector

Exploring terra incognita with ISS (IS631)

A study of the hitherto unknown single-neutron structure of 207 Hg was carried out using a 7.4 MeV/u 206 Hg beam and the ISOLDE Solenoidal Spectrometer to momentum analyze the protons following the neutron-adding (d,p) reaction

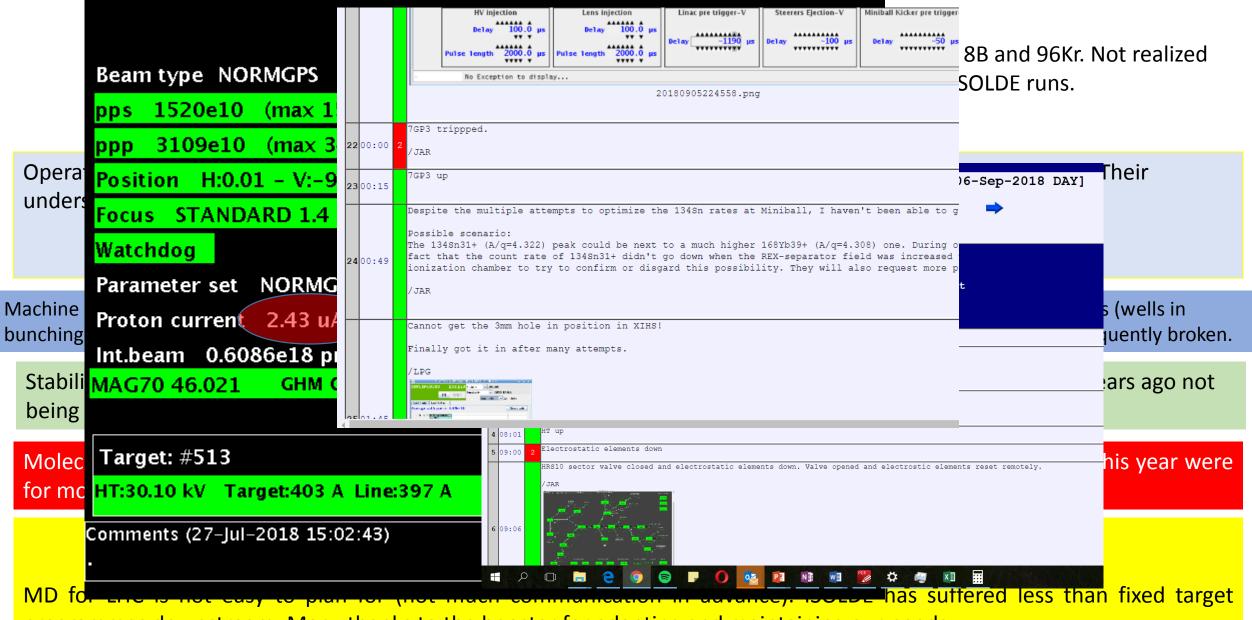

First exploration of singleparticle states outside *N* = 126, south of Pb, made possible by ISS.

Experimental info:

- ~5×10⁵ ions per second of ²⁰⁶Hg for ~82 hours
- Beam *purity of >98%*
- Measured in singles mode
- Using >30 deuterated polyethylene targets of thickness around 165 µg/cm² (to deal with target degradation)
- ISS set to a B-field of 2.5 T

HIE-ISOLDE beam energy

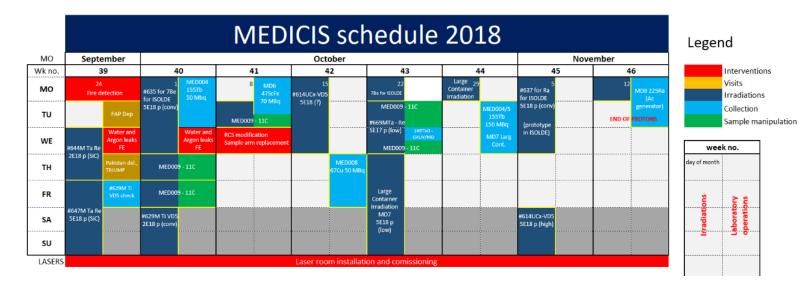
Importance of 10 MeV/u for exploitation of the direct-reaction studies at HIE-ISOLDE with ISS and Miniball – 10 MeV/u is ideal (for example the ²⁸Mg(d,p) study IS 621), leading to larger (optimal) cross sections and more distinct angular distributions for all reactions and masses, thus maximizing the efficiency of the experimental program


Using the example of IS631

Yields based on a 5-day experiment (typical for many ISOLDE runs)

10 MeV/u would allow the full complement of single-particle states to be probed in heavy nuclei, for which ISOLDE excels.

At a reduced beam energy, the higher *j* singleparticle states (populated more weakly) are out of reach, but present at 10 MeV/u


Some observations through the year

programmes downstream. Many thanks to the booster for adapting and maintaining our needs.

Interaction with MEDICIS

100100

Interaction with MEDICIS has been mostly constructive; still learning. Close interaction with Joao Pedro Ramos (MEDICIS run coordinator). Can be mutually beneficial: irradiation for winter physics. If protons could be maintained during target movement could be essentially transparent to ISOLDE. Improvements to the montrac security chain for target changes would also help. But physics programme has not been hit hard by MEDICIS.

Possibility of collecting non-medical isotopes: would have greatly helped for 53Mn

NOTE: MEDICIS has not yet really been running in "MEDICIS mode"....direct irradiation through targets until the wider units for MEDICIS become available

W	/eek 43 2	2018								
			RILIS	GPS	HRS	CA0	Protons	MEDICIS	Visits	other
		AM	At	Switch back to positive		GPS	NORMGPS			
ay	10			from ~ 0900	Once GPS positive:			#635 for Be		no proton while swite
Monday	10/22/2018	PM		until mid-afternoon	IS645 takes beam	HRS	NORMHRS			to positiv
Σ	10/				(proton scan needed?)					takes pla
		night			IS645	HRS	NORMHRS			
		AM			100.15	HRS	NORMHRS	1030: short irradiation	÷	
Tuesday	10/23/2018				IS645	4		for Simon	8	
ser	23/	PM				HRS	NORMHRS	Stegmann. Followed by	Š	
F	10/				IS645	4		#669M	<u>.</u> 0	
		night			100.15	HRS	NORMHRS	iradiation	÷	
<u>S</u>		AM		#534 Sn VD5	IS645	HRS	NORMHRS		No visits scheduled this week.	
Wednesday	10/24/2018	PM			IS645				l ≞	
ця.	24	РМ		Stable setup to GLM	13645	HRS	NORMHRS		- p	
We	ę	night			IS645	HRS			ů ř	
	<u> </u>	AM	-	Stable setup continues.	IS645	HRS	NORMHRS		sc	
~	2	AM		1-2 pulses STAGISO	13045	HRS	STAGISO_G		ts	
sda	5	PM		1-2 pulses 31AGI30	IS641 final stable tune	HRS	PS		<u>.</u>	
Thursday	10/25/2018	РМ		111Cd to GLM	1564 I final stable tune		NORMHRS/			
-	9	night		THEOREGEN	IS641	HRS	STAGISO G		ž	
		AM	1 〒	111Cd to GLM	IS641	HRS	PS NORMHRS/			
	9	7.000	· ·	THEGILD GEW	10041		STAGISO_G PS			
Friday	10/26/2018	PM	RILIS:	111Cd to GLM	IS641	HRS	F0			
Ē	0,28		-	THOUGO OLIM			NORMHRS/			
	≓	night		111Cd to GLM	IS641	HRS	STAGISO_G			
		AM		111Cd to GLM	IS641	HRS	PS NORMHRS/			
Ar	18	_				1	STAGISO_G PS			ig ig
Saturday	10/27/2018	PM		111Cd to GLM	IS641	HRS	- 10			ekei
Sati	0/21				(IS641 ends Sat PM for	1	STAGISO_G			s: n
	÷.	night		111Cd to GLM	cooling)	HRS	PS			the
		AM		111Cd to GLM		HRS	STAGISO_G			aw
2	10/28/2018		1			1	PS			The Wisard awakes: magnet powering over the weekend.
Sunday	8/2(PM	1	111Cd to GLM		HRS				wis erin
	0/2		1			1	STAGISO G	1		he
		night	1	111Cd to GLM		HRS	PS			⊢ <u>a</u>
		AM	1	till 0800: 111Cd to GLM	1	HRS	STAGISO_G			
ay	10/29/2018]	(tbc) Ta W or UC W		_	PS			
Monday	3/2	PM	1		#642 UC - n(ew)	HRS				
¥	0/2]				
		night	1			HRS				

Summary of week: GANDALPH experiment ends on Monday. Switch back to Positive on Monday morning. Once this is complete, HRS will take over. IS645 26Na to Vit Proton scan may be required, else nominal settings from previous target run in week 27 can be used. IS645 runs till Thursday afternoon. IDS then takes beam till Saturday ~ 1400 (to allow for radiactive cooling for target change on Monday 29th).

(GPS): At run ends on Monday morning at 0900. Switch back to positive Monday morning. #534 (NO5) for 111Cd beams to GLM. Setup to GLM only HT = 30kV. Follow settings for target from 2017: 14 Aug 2017 and 9 October 2017 and week 17 2018. Slow release of isotope, no proton scan. Usually requires a few hours to stabilise. 1-2 \$TAGISO pulses @ Bet2 ppp. folus spacing. Stable: 132ke.

(HRS): #658 used Ucx - Ta for Na and TI isotopes Setup at 50kV in bunching and transmission mode. VITO taking 26Na in bunching mode. IDS taking 182, 184, 186TI in transmission mode. Lasers in narrowband for TI run. Ends 1400 Saturday.

RFQ in bunching and transmission mode.

Protons: NORMGPS until Monday morning. NORMHRS + 1-2 pulses STAGISO to GPS until Saturday afternoon. Thereafter more STAGISO pulses car be allocated to GPS.

tions responsible: Miguel (169616) until 23rd October. Emanuele (167813) afterward

Researchers night 2018: official opening of the esplanade.

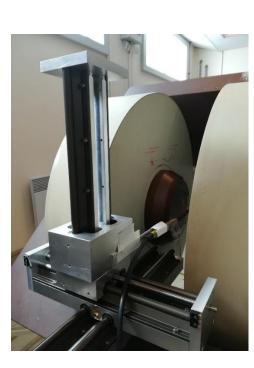
ISOLDE participation highly regarded. Perhaps new ideas next year...

Nuit des chercheurs : la rançon du succès

Vendredi 28 Septembre de 17 h à 23 h, le CERN ouvrait ses portes et proposait des animations exceptionnelles.

SAINT-CENIS-POULD Construction of the second secon

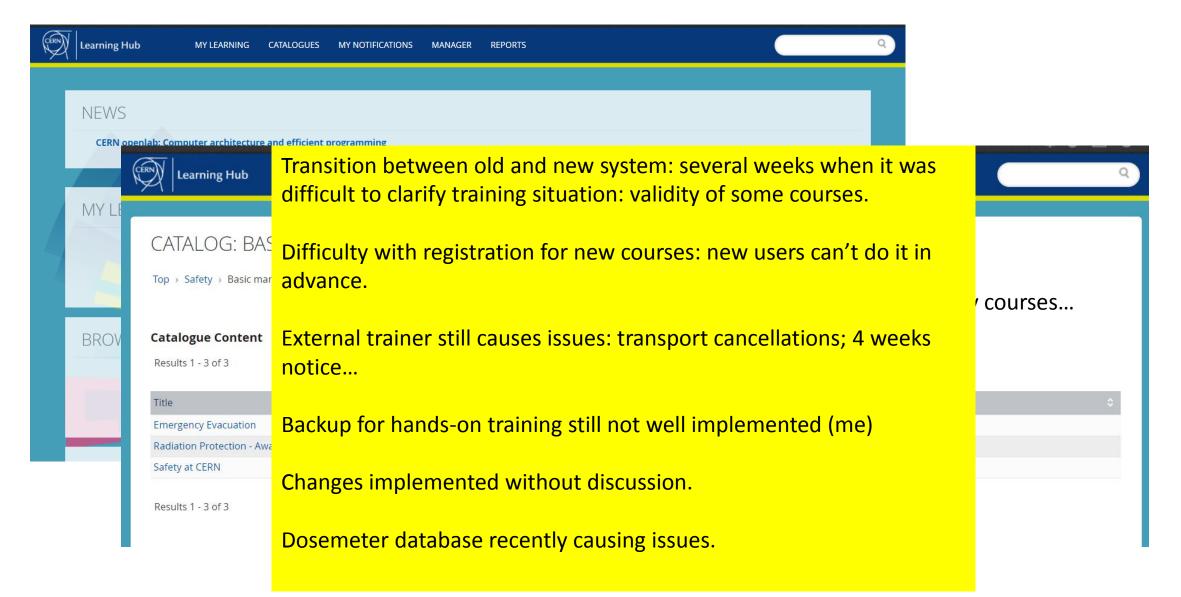
at unar Des documentaires, des animations, des ateliers et des expositions nochar


EP technicians

Antonio Goncalves and Francois Garnier: supported by the collaboration.


Available for jobs for users to assist experiment: especially mechanical work.

Work carried out for MIRACLS, IDS, HIE-ISOLDE, VITO, biophysics and others.



Initial feedback from new learning "hub" (safety training for most users)

Publications

nature physics

LETTERS https://doi.org/10.1038/s41567-018-0292-

Characterization of the shape-staggering effect in mercury nuclei

B.A. Marsh^{1*}, T.Day Goodacre^{1,2,18}, S. Sels^{3,18}, Y. Tsunoda⁴, B. Andel⁵, A.N. Andrevev^{6,7}, N.A. Althubiti², D. Atanasov⁸, A.E. Barzakh⁹, J. Billowes², K. Blaum⁸, T.E. Cocolios^{2,3}, J.G. Cubiss^{0,6}, J. Dobaczewski⁶, G. J. Faroog-Smith^{2,3}, D. V. Fedorov⁹, V. N. Fedosseev⁰, K. T. Flanagan², L. P. Gaffney^{0,3,0} L.Ghys³, M.Huyse³, S.Kreim⁸, D.Lunney¹¹, K.M.Lynch¹, V.Manea⁸, Y.Martinez Palenzuela³, P.L.Molkanov⁹, T. Otsuka^{3,4,12,13,14}, A. Pastore⁶, M. Rosenbusch^{13,15}, R. E. Rossel¹, S. Rothe^{1,2}, L. Schweikhard¹⁵, M. D. Seliverstov⁹, P. Spagnoletti¹⁰, C. Van Beveren³, P. Van Duppen³, M. Veinhard¹, E. Verstraelen³, A. Welker¹⁶, K. Wendt¹⁷, F. Wienholtz¹⁵, R.N. Wolf⁸, A. Zadvornaya³ and K. Zuber¹⁶

(N) from an atomic nucleus leads to a dramatic shape change. Consequently, the ground states of most isotopes in the nuclear These instances are crucial for understanding the components chart are non-spherical. Most commonly they are prolate (rugbyof the nuclear interactions that drive deformation. The mer- ball) shaped, although different shapes, corresponding to alternacury isotopes (Z = 80) are a striking example¹²: their close tive nucleon configurations, can coexist within the same nucleus³⁴ neighbours, the lead isotopes (Z=82), are spherical and steadily shrink with decreasing N. The even-mass (A=N+Z) microscopic origin of this phenomenon. mercury isotopes follow this trend. The odd-mass mercury radii. Due to the experimental difficulties of probing extremely charge distribution of the nucleus'. Along the isotopic chain of a neutron-deficient systems, and the computational complexity of modelling such heavy nuclides, the microscopic origin of the change in mean-square charge radius, $\delta(r)$, can be extracted in this unique shape staggering has remained unclear. Here, by a nuclear-model-independent way. Similarly, the hyperfine splitting applying resonance ionization spectroscopy, mass spectrom-etry and nuclear spectroscopy as far as ¹⁷⁷Hg, we determine spin (*I*), magnetic dipole (µ) and electric quadrupole (Q) moments. *Hg as the shape-staggering endpoint. By combining our Such measurements are therefore a sensitive and direct probe of the experimental measurements with Monte Carlo shell model valence particle configuration and changes in nuclear size or deforcalculations, we conclude that this phenomenon results from mation as a result of the addition or removal, and consequential the interplay between monopole and quadrupole interactions redistribution, of nucleons. driving a quantum phase transition, for which we identify the cury isotopes is a unique and localized feature in the nuclear chart, it nicely illustrates the concurrence of single-particle the mercury isotopic chain, in which a sudden and unprecedented and collective degrees of freedom at play in atomic nuclei.

array of quantum phenomena. These complex many-body systems radii mirror those of lead': steadily shrinking with decreasing N like structure, akin to Bohr's model of electrons in an atom. In the neutron-deficient mercury isotopes is unparalleled elsewhere in the vicinity of closed shells, at the magic numbers of Z, N=8, 20, 28, nuclear chart and was key to establishing the idea of shape coexis-50, 82 and N=126, the nuclear wavefunction is dominated by the tence at low excitation energy^{1,7}. A plethora of studies on the excited last few particles (or holes) and excitations thereof. In contrast to states of these nucleis provided a further substantial insight into this single-particle nature, collective behaviour appears away from shape coexistence, complementing the laser spectroscopy studies of the closed shells, as increased nucleon-nucleon correlations drive ground and isomeric states. However, to acquire a full understanding

In rare cases, the removal of a single proton (Z) or neutron the minimum-energy configuration of the nucleus to deformation. It remains a challenge to pin down the full picture of the underlying

Optical spectroscopy is able to measure subtle shifts in the 83,885 Hg, however, exhibit noticeably larger charge energy of the atomic electron levels, arising from changes in the given element, this effect is known as the isotope shift. From this,

The radioactive isotopes in the lead region have been the subparticipating orbitals. Although shape staggering in the mer- ject of a variety of optical spectroscopy studies for several decades. An intensified interest in this region was sparked by the study of increase in charge radius was observed for 185Hg, 183Hg and 181Hg Atomic nuclei, comprising protons and neutrons, exhibit a rich (refs 1-2). For the heavier mercury isotopes the changes in charge obey the Pauli exclusion principle which dictates a nucleonic shell- This seminal discovery of shape staggering between odd and even

CERN, Geneva, Switzerland. 2School of Physics & Astronomy, The University of Manchester, Manchester, UK. 2KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, Belgium. 4Center for Nuclear Study, University of Tokyo, Tokyo, Japan. 5Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, Bratislava, Slovakia, "Department of Physics, University of York, York, UK. "Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan. *Max-Planck-Institut für Kernphysik, Heidelberg, Germany. *Petersburg Nuclear Physics Institute (PNPI), NRC Kurchatov Institute, Gatchina, Russian Federation. 10 School of Engineering & Computing, University of the West of Scotland, Paisley, UK. 11 CSNSM-IN2P3-CNRS, Universite Paris-Sud, Orsay, France, "Department of Physics, University of Tokyo, Tokyo, Japan, "RIKEN Nishina Center, Wako, Japan, "National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, USA. 14 Institut für Physik, Universität Greifswald, Greifswald, Germany. "Technische Universität Dresden, Dresden, Germany. 17 Johannes Gutenberg Universität, Mainz, Germany. 18 These authors contributed equally: T. Day Goodacre, S. Sels. *e-mail: bruce.marsh@cern.c

NATURE PHYSICS | www.nature.com/naturephysic

CERN willing to support certain publications for open access which feature CERN author.

For ENSAR2 open access for all publications. Can be a repository e.g. ARXIV.

CERN EP creating a designated area for ISOLDE pre-prints which can be used for future publications. (but not retrospectively).

PHYSICAL REVIEW LETTERS 121, 142701 (2018)

First Accurate Normalization of the β -delayed α Decay of ¹⁶N and Implications for the ¹²C(α , γ)¹⁶O Astrophysical Reaction Rate

O. S. Kirsebom,^{1,*} O. Tengblad,² R. Lica,^{3,4} M. Munch,¹ K. Riisager,¹ H. O. U. Fynbo,¹ M. J. G. Borge,^{2,3} M. Madurga,³ I. Marroquin,² A. N. Andreyev,^{5,18} T. A. Berry,⁶ E. R. Christensen,¹ P. Díaz Fernández,⁷ D. T. Doherty,⁵ P. Van Duppen,⁸ L. M. Fraile,⁹ M. C. Gallardo,⁹ P. T. Greenlees,^{10,11} L. J. Harkness-Brennan,¹² N. Hubbard,^{1,} M. Huyse,⁸ J. H. Jensen,¹ H. Johansson,⁷ B. Jonson,⁷ D. S. Judson,¹² J. Konki,^{3,10,11} I. Lazarus,¹³ M. V. Lund,¹ N. Marginean,⁴ R. Marginean,⁴ A. Perea,² C. Mihai,⁴ A. Negret,⁴ R. D. Page,¹² V. Pucknell,¹³ P. Rahkila,^{10,11} O. Sorlin,^{3,14} C. Sotty,⁴ J. A. Swartz,¹ H. B. Sørensen,¹ H. Törnqvist,^{15,16} V. Vedia,⁹ N. Warr,¹⁷ and H. De Witte⁸ ¹Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark ²Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain ³CERN, CH-1211 Geneva 23, Switzerland ⁴Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), RO-077125 Bucharest-Magurele, Romania ⁵Department of Physics, University of York, York YO10 5DD, United Kingdom ⁶Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom ⁷Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden ⁸KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium ⁹Grupo de Física Nuclear, Universidad Complutense de Madrid, E-28040 Madrid, Spain ¹⁰University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland ¹Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland ¹²Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom ³STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom 14 GANIL, CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France ¹⁵Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany ¹⁶GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ⁷Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany ¹⁸Advanced Science Research Centre (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Ibaraki 319-1195, Japan

(Received 9 April 2018; revised manuscript received 22 June 2018; published 3 October 2018)

The ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11} , of the bound 1⁻ level in ¹⁶O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α -transfer reactions or the β -delayed α decay of ¹⁶N, but the latter approach is presently hampered by the lack of sufficiently precise data on the β -decay branching ratios. Here we report improved branching ratios for the bound 1⁻ level $[b_{\beta,11} = (5.02 \pm 0.10) \times 10^{-2}]$ and for β -delayed α emission $[b_{\beta\alpha} = (1.59 \pm 0.06) \times 10^{-5}]$. Our value for $b_{\beta\alpha}$ is 33% larger than previously held, leading to a substantial increase in γ_{11} . Our revised value for γ_{11} is in good agreement with the value obtained in a-transfer studies and the weighted average of the two gives a robust and precise determination of γ_{11} . which provides significantly improved constraints on the ${}^{12}C(\alpha, \gamma)$ cross section in the energy range relevant to hydrostatic He burning.

142701-1

DOI: 10.1103/PhysRevLett.121.142701

In the hot and dense interior of stars, helium is burned into carbon and oxygen by means of the triple- α reaction and the ${}^{12}C(\alpha, \gamma)$ reaction. The rates of the two reactions

Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.

Further distribution of this work must maintain attribution to

the author(s) and the published article's title, journal citation,

regulate the relative production of carbon and oxygen-a quantity of paramount importance in astrophysics affecting everything from grain formation in stellar winds to the late evolution of massive stars and the composition of type-Ia supernova progenitors [1]. At the temperatures characteristic of hydrostatic He burning, the triple- α reaction is dominated by a single, narrow resonance-the so-called Hoyle resonance-and hence it has been possible to constrain the reaction rate through measurements of the properties of the Hoyle resonance. In contrast, the ${}^{12}C(\alpha, \gamma)$

0031-9007/18/121(14)/142701(6)

and DOI

Published by the American Physical Society