ONEJATA

ONEDATA PLATFORM FOR TRANSPARENT AND UNIFIED DATA ACCESS IN HYBRID CLOUDS

Presented by: Bartosz Kryza

DATA IN HYBRID CLOUD ENVIRONMENTS

ARCHITECURE OVERVIEW

ONEDATA ARCHITECTURE

MAIN FEATURES

PROBLEM: GLOBAL NAMESPACE AND TRANSPARENT ACCESS TO DATA IN MULTI-CLOUD ENVIRONMENTS

- Transparently access existing and create new data in multi-cloud environments
- Access data from anywhere
- Use many protocols to access the same data
- Use global namespace for globally distributed data collections

[...] BUT WE WANT POSIX

- Support for most of the POSIX operations on virtual file system
- Global namespace automatically mapped to a virtual file system mountable on VM, Grid nodes, Docker containers, desktops

[root@1f87c053280e oneclient]# ls

[...] WITH THE SAME PERMISSIONS

- LUMA flexible mapping of POSIX access rights among different storages
- Extensible easy to develop integration with custom AAI systems (e.g. LDAP)

PROBLEM: HOW TO ACCESS LOCKED-IN DATA

- Current data collections stored on locally available POSIX file system can be easily exposed
- Access data in public Cloud on-the-fly, without pre-staging, with smart caching
- Remotely created data can be replicated back to the private Cloud local storage automatically

SYNCHRONIZATION OF PRIVATE STORAGE

FILE OPERATIONS QUEUE STATISTICS 💿

SYNCHRONIZATION THROUGHPUT

PROBLEM: HIGH TROUGHPUT DATA TRANSFERS

- Replicate files on demand and on the fly without any additional effort
- Migrate data between sites on demand with simple API interface
- Easily monitor transfers and current data distribution through Web GUI or REST API

REPLICA MANAGEMENT SIMPLIFIED

- Manage files not replicas
- Files distribution between locations is hidden below the virtual filesystem structure
- Replica management on a block basis
- Missing blocks delivered on the fly
- API for replica management for pre-staging and implementing external data policy management

0)		+ E		0 10	· · · · · · · · · · · · · · · · · · ·	9	
Data	🛖 S1	File distribution	e blocks among providers	for file file		SIZE	MODIF
\bigcirc	📕 Root di	Provider	File blocks	for the the		106 B	2016-0
Spaces		p1	o		106 B		
Groups		p2	0		106 B		
a23e							
Tokens			Chara	-			
Providers			Close				

HIGH TROUGHPUT DATA MIGRATION IN P2P MESH

- Data Transfer Mesh
- 3 Oneproviders connected by 20+Gbit/s links

① joe -

- Simultaneous data transfers between all of them
- Single VM Node per
 Provider

PROBLEM: HIGH TROUGHPUT LOCAL DATA ON HETEROGENOUS STORAGE

- You can work with different type of storages: Ceph, S3, POSIX, SWIFT, GlusterFS, WebDAV (new)
- DirectIO architecture allows for high throughput data processing from all machines running Oneclient with only single Oneprovider deployment

MULTIPLE STORAGE BACKENDS

PROBLEM: DATA DISCOVERY AND REPLICATION BASED ON DISCOVERY RESULTS

- Work with data and metadata in one system avoiding problems of consistency
- Monitor metadata data changes through API in order to integrate with other services
- You can discover data within data collections using highly efficient indices built on top of Map-Reduce
- New interface for originating replicas based on data discovery results

INTEGRATED METADATA MANAGEMENT

- All files and directories can have custom metadata
- API for metadata management
- API for data discovery based on metadata
- Virtual Folders based on metadata tags

SIZE	MODIFICATION
→ 30 MB	2016-10-07 11
🤣 10 MB	2016-10-07 11
15 B	2016-10-07 20

PROBLEM: CACHE MANAGEMENT AND FILE POPULARITY

- Control and Monitor local storage usage
- Monitor local file popularity
- Automatically evict locally least popular replicated data
- Expose interface for external logic to cache eviction

ONEDATA FILE POPULARITY AND SMART CACHING

🛑 😑 🏮 📑 Frontend TODO: Transfe	fers GUI X Oneprovider - Data - Space "krk-n- X 0	Dneprovider - Data - Space "krk-n- X Onepanel	× Onepanel	× +			
← → C ŵ	🛈 🙆 https://release17060-rc8-oneprovider-pa	ris.release17060-rc8.svc.dev.onedata. uk.to :9443/#/onedat	ta/clusters/the-cluster/spaces		◙ ☆	⊻ ∥\ ⊡	S
	STERS	krk-n-par-3					•
PROVIDER PANEL		Name: krk-n-par-3		Providers support (total 1.9 GiB) 🔍		Chart Table	
Sear	rch Q	Id: IHa7SuFLUjm-3XEAPGOgxWSQR_tixPIMwqMuf950rn4	4				
🛃 CLUSTERS	release17060-rc8-oneprovider-paris	Mount in root: 🔵 🔒			Provider#VIFf-T		
•• CLUSTERS	release 17000-rco-oneprovider-paris	This provider storage: s3		release17060-rc8 1.9 GiB 953.7 MiB			
	X Nodes			953.7 MiB			
8	Provider						
	Storages	Storage synchronization Files popularity	Auto cleaning				
	Spaces	AUTO CLEANING 🔍					
		CLEAN REPLICATED FILES Saving	CLEANING BOUNDARIES				
		Lower size limit 200 MiB ~		Total space: 953.7 MiB Used space: 384.1 MiB		elease: 179 MiB	
		Upper size limit MiB 🗸			711 MiB		
		Not opened for Hours ~	•	· · >			
			205.1 MiB				
					Start cl	eaning now	
2		CLEANING REPORTS (
		Start 💌	Stop	Released size	Files number	Status	
		8 Dec 2017 13:32:13	-	0 B (out of 179 MiB)	0	¢	
		8 Dec 2017 13:31:53	8 Dec 2017 13:31:55	448 MiB (out of 565.4 MiB)	1	8	

(V) admi

19

ONEDATA IN HNSC

RESULTS

Onedata has been tested thoroughly using applications from:

- EMBL
 - Large genome files processed in public Cloud on the fly from storage on private Cloud
- INFN
 - Large number of files processed in a sequence of random read operations with very small block size (~1KB) in public Cloud on the fly from storage on private Cloud with automatic prefetch
- DESY
 - Complex deployment including LUMA for UID/GID mapping from private Cloud storage to public Cloud and automatic replication of results back to the private Cloud storage with correct access rights

ONEDATA HIGH TROUGHPUT DATA PROCESSING ON HNSC

Oneclients

Onedata Transparent POSIX File System Processing transparently cached data - 37GBytes/sec

LESSONS LEARNED

- Implementing transparent hybrid cloud virtual filesystem with pure POSIX interface for real life applications is challenging but possible!
- Seemingly simple issues such as authentication or uid/gid mapping can be in fact very challenging and time consuming to get right
- High-performance backend storage and low latency network are critical to achieve high IOPS
- Performance issues are hard to track instantly in hybrid Cloud deployments, as they can depend on multiple factors (network issues, storage issues, high system loads from other users, etc.)

COMMERCIALIZATION PLAN

- Spin-off company is being established, which will be in charge of evolution of commercial features of the project
- Several support plans will be provided with different reaction times and support levels
- Pricing will be based on the number of Oneprovider instances deployed and total storage size managed by them
- Tentative pricing, flat rate per 1PB/Oneprovider/month:
 - Silver 48h reaction time
 - Gold 24h reaction time
 - Platinum 7h reaction time

ACKNOWLEDGEMENTS

We would like to thank everyone in the HNSC for this opportunity in particular:

- All Buyers Group members who have participated in Onedata evaluation for their patience and vigilance in pointing out missing features and bugs
- Both T-Systems and RHEA consortia for trusting us and helping us with evaluation on production Cloud infrastructures

QUESTIONS?

Please visit: www.onedata.org

EXAMPLE - EMBL-EBI APPLICATION DEPLOYMENT

CDMI HTTP ACCESS

Operations	Capabilities
Basic object GET PUT DELETE	cdmi_dataobjects, cdmi_read_value, cdmi_modify_value, cdmi_delete_dataobject
Basic container GET PUT DELETE	cdmi_list_children, cdmi_create_container, cdmi_delete_container
Metadata (container&dataobject)	cdmi_read_metadata, cdmi_modify_metadata, cdmi_size, cdmi_(atime mtime ctime)
Access control lists (rwx)	cdmi_acl
Big folders	cdmi_list_children_range
File System Export (FUSE client)	-
Move and copy	cdmi_(move copy)_(container dataobject)
 Big files 	cdmi_read_value_range, cdmi_modify_value_range
Access by ObjectID	cdmi_object_access_by_ID

DATA IN HYBRID CLOUD ENVIRONMENTS

PROBLEM: AUTOMATIC DECISIONS ABOUT DATA PLACEMENT BASED ON EVENTS

- You can hook your customized decision logic into the system
- Onedata offers a long polling HTTP API for monitoring changes in the system
- The API is eventually consistent
- The customized logic can be used for instance for:
 - automatic replication to certain locations
 - metadata ingestion