

Luminosity measurement issues

in the current MDI design at future circular colliders

I. Bozovic Jelisavcic

VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia

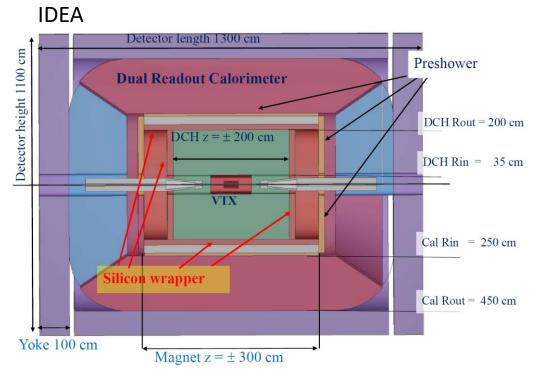
26-27 March 2019, CERN

34th FCAL Workshop

- News from the circular colliders
- CEPC and FCCee: current MDI design in the CDR
- Challenges for luminosity measurement
- Possible FCAL contribution

What is in common:

- CDRs released end-of 2018 for both CEPC and FCC
- MDI region among the most challenging at both experiments
- Flexibility to run at different CM energies (Z pole, WW production, Higgs factory) with a common detector layout
- Maximizing luminosity, minimizing synchrotron radiation (and other) background
- Precision issues in the integral luminosity measurement (10⁻⁴)
- Technologies for luminometer (currently derived from ILC and CLIC)



News from the circular colliders

Detector concepts:

- CEPS: CEPC_ILD (baseline), IDEA
- FCC: CLD (baseline), IDEA

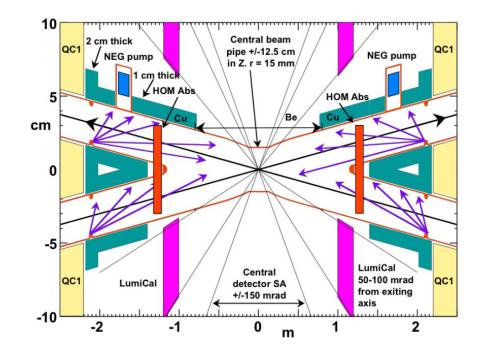
Si-pixel VTX, a large-volume extremely-light short-drift wire chamber surrounded by a layer of Si micro-strip detectors, a thin, low-mass superconducting solenoid coil ($\sim 0.8 X_0$), a pre-shower detector, a dualreadout calorimeter, and muon chambers within the magnet return yoke.

Concept	ILD	CEPC baselii e	IDEA	Concept	CLIC
Fracker	TPC/Silicon	TPC/Silicon	Drift Chamber/Silicon	Vertex inner radius [mm]	31
		or FST		Tracker half length [m]	
Solenoid B-Field (T)	3.5	3	2	Tracker outer radius [m]	1.5
Solenoid Inner Radius (m)	3.4	3.2	2.1	ECAL absorber	1
Solenoid Length (m)	8.0	7.8	6.0		
L* (m)	3.5	2.2	2.2	ECAL X_0	
VTX Inner Radius (mm)	16	16	16	HCAL absorber	
Fracker Outer Radius (m)	1.81	1.81	2.05	HCAL λ_{I}	7.
Calorimeter	PFA	PFA	Dual readout	Solenoid field [T]	4
Calorimeter λ_I	6.6	5.6	7.5		12.
ECAL Cell Size (mm)	5	10	-	Overall height [m]	
ECAL Time resolution (ps)		200	-	Overall length [m]	11.
ECAL X_0	24	24	-		
HCAL Layer Number	48	40	-		
HCAL Absorber	Fe	Fe	-		
HCAL λ_I	5.9	4.9	-		
ORCAL Cell Size (mm)	× -	-	6.0		
ORCAL Time resolution (ps)	-	-	100		
ORCAL Absorber	-	\ · /	Pb or Cu or Fe		
Overall Height (m)	14.0	14.5	11.0	Yoke	
Overall Length (m)	13.2	14.0	13.0		
				Coil	
			_1		
			4		
				HCAL	
				ECAL	
<u> </u>					

CLD

17

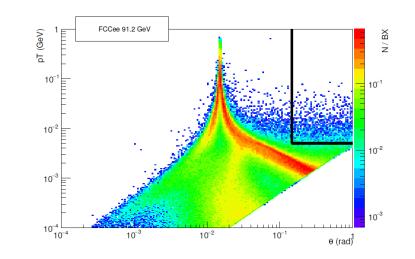
2.1


5.5

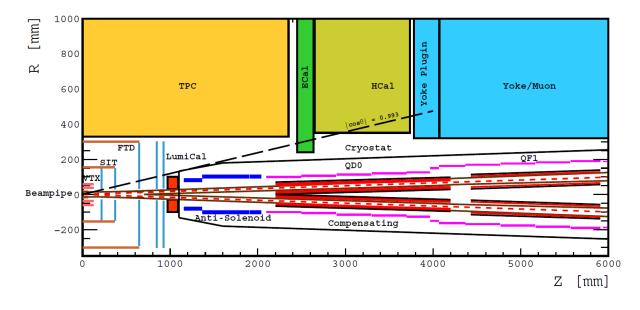
2

12.0

10.6

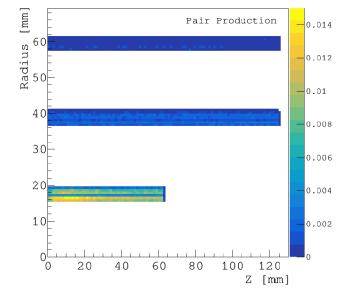

FCCee: current MDI design in the CDR and background issues

- 30 mrad crab-crossing, L*=2.2m
- LCAL: 1.074m-1.190m from the IP
- LCAL coverage: 62-88 mrad
- Target L=2.10³⁶ cm⁻² s⁻¹ (Z-pole) ~5xLEP
- Keep the detector SR hits 'free' (i.e. 2.5 hits/BX in the tracker volume @ 240 GeV)
- Less than $10^{-3} \gamma \gamma \rightarrow hadrons$ interactions per BX @ Z⁰ pole occurs with the $\gamma \gamma$ invariant mass above 2 GeV


The number of incoherent electrons from BS that would reach CLD vertex detector per BX in the solenoid 2 T field is given in the last row

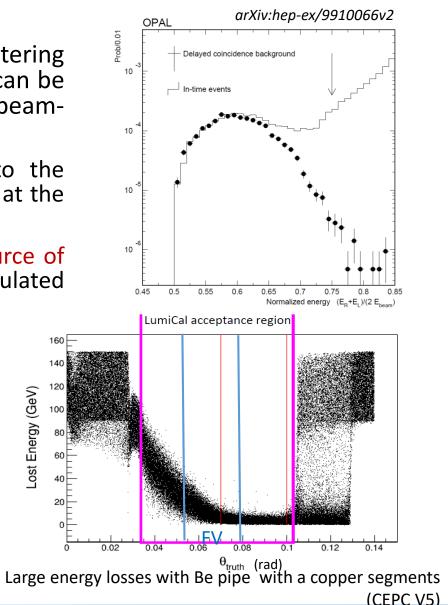
\sqrt{s} [GeV]	91.2	365
Total particles	800	6200
Total E (GeV)	500	9250
Particles with $p_{\rm T} \ge 5 \mathrm{MeV}$ and $\theta \ge 8^{\circ}$	6	290

Incoherent pairs at FCCee with maximum depositions around 15 mrad.

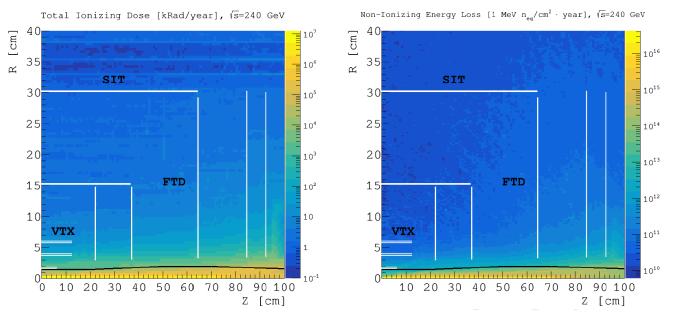

26-27 March FCAL WS CERN

- 33 mrad double-ring x-angle, L*=2.2m
- LCAL: ~1m, 26-105 mrad geometrical acceptance (53-79 mrad fiducial volume)
- 680 ns, 25 ns and 210 ns bunch-spacing @ H, Z^0 and WW threshold \rightarrow different level of background
- SR, BS, off-momentum particles, similar as at FCEee (first VTX layer: 2.4 particle/cm² per BX @240GeV)

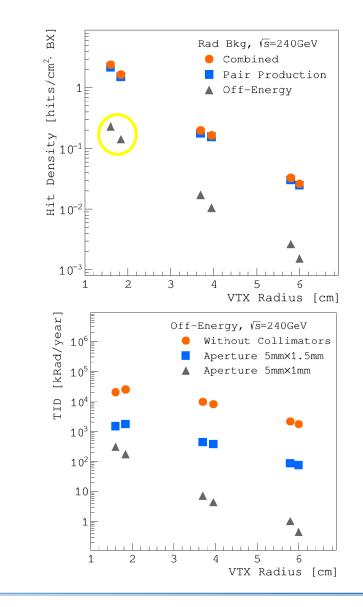
	Operation	\sqrt{s}	L per IP	Years	Total $\int L$	Event
	mode	(GeV)	$(10^{34} \text{ cm}^{-2} \text{s}^{-1})$		$(ab^{-1}, 2 \text{ IPs})$	yields
-	Н	240	3	7	5.6	1×10^6
	Z	91.2	32 (*)	2	16	7×10^{11}
	W^+W^-	158-172	10	1	2.6	2×10^7



Incoherent pair background from BS in the CEPC VTX


Circulating beam particles can lose significant amounts of energy in scattering processes. If exceeding 1.5% of the nominal energy scattered particles can be kicked off their orbit. Usual mechanisms are BS, radiative Bhabha and beam-gas interactions.

- Can influence luminosity measurement by accidental overlapping to the Bhabha signal and by coincidence in both detector halves that happens at the same rate as the signal.
- Off-momentum particles from beam-gas interaction were the main source of systematics in luminosity measurement at LEP (0.1-0.6·10⁻⁴). Nicely regulated by the (relative) energy cut.
- Material budget in front of the LumiCal is important (left: optimization of the beam-pipe material for CEPC CDR studies)
- To keep the luminometer to perform, MDI materials (i.e. HOM absorbers) must be out of the way
- Design of this crowded region is under study


Background: combined

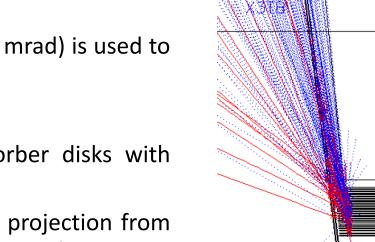
CEPC simulations shows that proper size collimators can be employed to suppress off-momentum particles in the first VTX detector layer to 0.22 hits/cm² per BX

Total ionizing and non-ionizing doses at CEPC Si subdetectors

The challenge is to maximize performance in terms of luminosity whilst maintaining the related background at a tolerable level

26-27 March FCAL WS CERN

LumiCal shower leakage


An iron cone of 5 mm thickness, positioned at $\cos\theta = 0.992$ (~120 mrad) is used to estimate filtering of shower secondaries

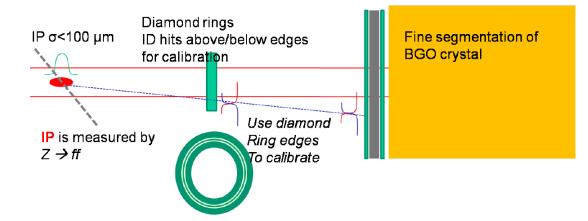
Two configurations were considered:

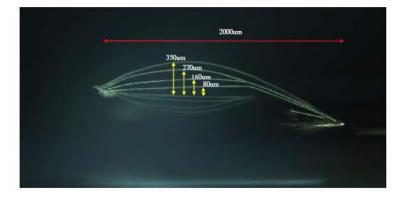
- TUBE: Cylindrical detector shape assembled of sensor-absorber disks with constant outer radii of 100 mm
- CONE: Shape with the outer radius r following a straight line projection from the IP at tan θ = 0.1 (~ 6 deg.), corresponding to r_{out} = 100 mm at z = 1 m.

	50 GeV	electrons	125 GeV	electrons
	TUBE	CONE	TUBE	CONE
θ (mrad)	$N_{\rm enter}/N_{\rm pass}$	$N_{\rm enter}/N_{\rm pass}$	$N_{\rm enter}/N_{\rm pass}$	$N_{\rm enter}/N_{\rm pass}$
40	15.4/5.6	13.6/5.8	38.0/16.0	35.8/14.7
90	392/155	173/76	1028/399	434/19.7
95	501/290	367/152	2389/720	937/382
98	762/216	860/284	1718/473	2176/725
99	553/140	1331/367	(1102/273)	3306/915

Table 1: Number of particles leaking out of the LumiCal outer radius (N_{enter}) and number of particles passing through the Fe-cone (N_{pass}). Two different detector designs (TUBE and CONE) and two shower energies (50 GeV and 125 GeV) are simulated.

- There is a larger shower leakage (mostly partcles < 100 MeV) for all electron energies for the CONE configuration, due to the fact that shower is developing at larger θ
- 5 mm Fe-cone reduces the number of secondaries up to 75%

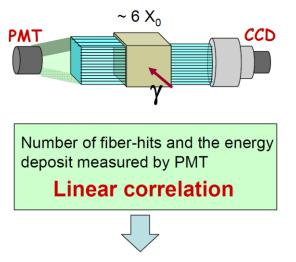

26-27 March FCAL WS CERN


LumiCal technologies

Si or diamond layer in front of the luminometer seems to be a viable option to enable:

- calibration
- e/γ separation
- polar angle measurement with precision equivalent to 1 μm radial uncertainty
- LumiCal technology options are open (CEPC and FCCee)
- Si-W 'ILC-like' sandwich is an option
- But, is a detector with a simpler readout possible?
- Readout and assembly of SiW detector
- Coarse segmentation, compact electronics, search feasible readout chips

Detector technology is still open, but, it is clear that performance in terms **of energy and polar angle measurement** will play a key role in the control of systematics.

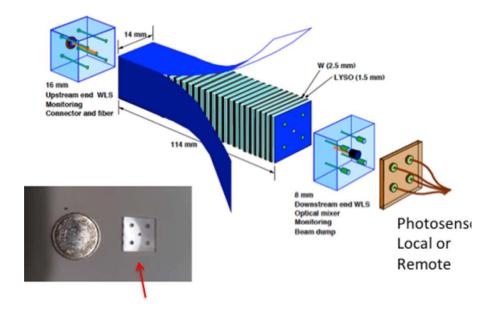


此次打線實驗是以固定直線距離2000um 做弧高控制,弧高可以做到 80um,考慮生產良率會控制在150um內。

Industry studies with Ag wire bonding 80 µm high. Courtesy: S. Hou

26-27 March FCAL WS CERN

- Si-W 'ILC-like'
- BGO (has a bunch spacing of 25 ns is an issue at Z⁰ pole CEPC);
- Lutetium Yttrium Orthosilicate (Lu₂SiO₅:Ce) may works in a CMSlike shashlik type of calorimeter
- SciFi spaghetti calorimeter with individually read-out fibers (prototyped for J-PARC K_L experiment)


Energy deposit can be measured http://www.nda.ac.jp/cc/radiati by just counting the number of fiber on/presen/DPF2006_toru.pdf

Good light output - 70% of NaI(TI), High density - 7.15 g/cm³

- Fast decay times c.45ns
- Energy resolution <12%
- Not hygroscopic
- Are relatively inexpensive

Shashlik style module configuration

Courtesy: S. Hou

Transverse size of modules ~ ½ Swiss Franc

Radiation hardness

- 1. Use of dense materials
- 2. Small Molière Radius
- 3. Rad-hard materials
- 4. Short optical paths
- 5. Rad-resistant, small pixel photosensor

26-27 March FCAL WS CERN Ivar

- Detector positioning and beam related uncertainties have to be strictly controlled (down: is ΔL/L=10⁻³ per uncertainty at 240 GeV CEPC)
- Luminometer has to be centered at the outgoing beam to 'naturally' apply asymmetric acceptance selection (LEP style) and thus relax systematics

Parameter	Unit	Limit
$\Delta E_{\rm CM}$	MeV	120
$E_{e^+} - E_{e^-}$	MeV	240
$\frac{\delta \sigma_{E_{beam}}}{\sigma_{E_{beam}}}$		effect canceled
Δx_{IP}	mm	<1
Δz_{IP}	mm	10
Beam synchronization	ps	7
$\sigma_{x_{\mathrm{IP}}}$	mm	1
$\sigma_{z_{ m IP}}$	mm	10
r_{in}	mm	10
$\sigma_{r_{ m shower}}$	mm	1
Δd_{IP}	$\mu \mathrm{m}$	500

 $\Delta f/f = 10^{-3}$

Some requirements are on the technological limit:

- Inner radius of the luminometer: ~1 μ m (4.4 μ m at OPAL contributing 1.4·10⁻⁴ uncertainty in L)
- Distance between calorimeters ~80 μm over app. 1m.
 Should be easily achieved with FSI.
 - ΔE_{CM} and beam asymmetry at the level of a few MeV for the cross-section calculation (2.7.10⁻⁴ at LEP in ΔE) but some relevant processes might have the same x-section dependence with \sqrt{s} as Bhabha in which case the effect cancels out.

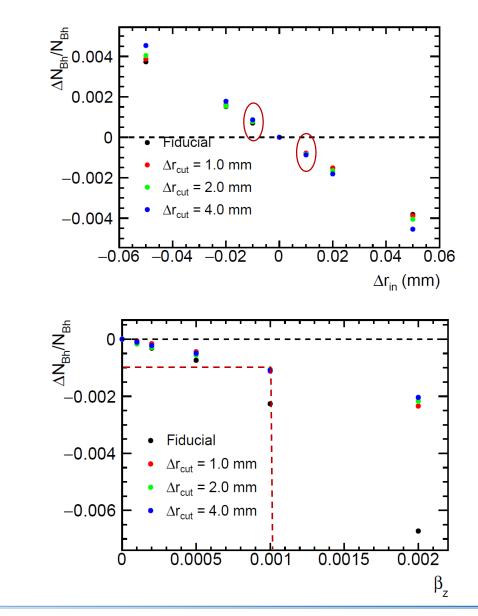
άι.			
	Parameter	unit	limit $\Delta L/L=10^{-4}$
-	$\Delta E_{\rm CM}$	MeV	4.5
	$E_{e^+} - E_{e^-}$	MeV	11
	$\frac{\delta\sigma_{E_{beam}}}{\sigma_{E_{beam}}}$		Negligible up to
	$\sigma_{\!E_{beam}}$		at least factor 2
	$\Delta x_{\rm IP}$	mm	0.5
	Δz_{IP}	mm	2
	Beam synchronisation	ps	3
	$\sigma_{\!\chi_{ m IP}}$	mm	0.5
	$\sigma_{\!_{\mathcal{Z}\mathrm{IP}}}$	mm	7
	<i>r</i> _{in}	μm	1
	$\sigma_{r_{\mathrm{shower}}}$	mm	0.2
	$\Delta d_{ m LC}$	μm	80
	$\Delta \phi$	mrad	0.8

26-27 March FCAL WS CERN

Inner radius of the luminometer

- Uncertainty of the inner radius translates into counting uncertainty since the Bhabha cross-section scales like $1/\theta^3$

Symmetric bias on beam energy:

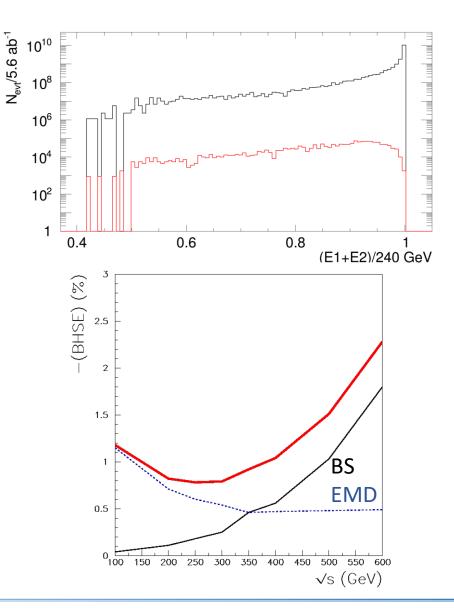

Colliding beam energies can be symmetrically shifted for ΔE , resulting in $2 \cdot \Delta E$ shift in CM energy

- Bhabha cross-section changes as $\sim 1/s \Rightarrow$ relative uncertainty on (average net) CM energy < 5 \cdot 10⁻⁴
- Counting bias due to the acceptance cut on energy is negligible

Asymmetric bias on beam energy:

 $|\mathsf{E_+}\text{-}\mathsf{E_-}|\text{=}\ \Delta\mathsf{E} \Longrightarrow \beta_{\mathsf{z}}\text{=}\ \Delta\mathsf{E}/\mathsf{E}_{\mathsf{CM}}$

- Longitudinal boost of the CM frame of the colliding particles to the lab frame β_z
- \Rightarrow counting loss due to the loss of acolinearity
- Asymmetry in beam energies should be smaller than 10⁻³



$2-\gamma$ physics background

- Initial contamination (without any selection) of the detector volume is $\sim 10^{-4}$ w.r.t. the signal at 240 GeV CEPC
- B/S ~ 10 times smaller than at 500 GeV ILC. This is mostly due to the Bhabha x-section dependence as 1/s, while 2-γ x-section is scaling like ln²(s)
- Similar situation should be at FCCee Higgs factory
- With the relative energy $E_{rel}{>}0.8,$ B/S ratio is ${\sim}~8{\cdot}10^{\text{-5}}$

EM deflection of Bhabha particles

- Outgoing Bhabha electrons/positrons can be deflected towards lower polar angles due to interaction with incoming bunches
- Like with BS, the EM field depends on a bunch transverse sizes: $\sim 1/(\sigma_x + \sigma_y)$
- The effect is at a % level at ILC at Z₀ pole (left), meaning that it will be of the order of 10⁻³ at 240 GeV CEPC and ~3· 10⁻³ at Z⁰ pole, just on the basis of the beam parameters.
- This requires consideration for a precision goal of $\Delta L/L=10^{-4}$

- Instrumentation of the very forward region is very important for realization of physics program at any future machine
- Circular colliders (CEPC and FCCee) are facing particular challenges to reach luminosity precision goal of 10⁻⁴ (of particular importance at the Z⁰ pole), where the most critical challenges are coming from mechanics and MDI
- Many issues are in common between CEPC and FCCee (also with linear colliders)

LumiCal technology options are open

- Readout is a challenge, as well as assembling and prototyping
- If the FCAL Collaboration is interested, it's a great space to contribute

BACKUP

A long list of sources of integral luminosity systematic uncertainties:

- 1. Beam related:
- Uncertainty of the average net CM energy
- Uncertainty of the asymmetry in energy of the e⁺ and e⁻ beam
- Uncertainty of the beam energy spread
- IP position displacement and fluctuations w.r.t. the LumiCal, finite beam sizes at the IP
- Uncertainty of the (eventual) beam polarization
- 2. Detector related:
- Uncertainty of the LumiCal inner radius
- Positioning of the LumiCal (longitudinal L-R distance)
- Mechanical fluctuations of the LumiCal position w.r.t the IP (vibrations, thermal stress)
- Tilt and twist of the calorimeters
- Uncertainty of the sampling term
- Detector performance: energy and polar angle resolution
- 3. Physics interactions:
- Bhabha and physics background cross-section (uncertainty of the count)
- Bhabha acolinearity other sources of the acceptance losses (ISR and FSR, Beamstrahlung)
- Machine-related backgrounds (off-momentum electrons from the beam-gas scattering)

Uncertainty of count is based on:

 Modification of the acceptance region

> (either directly or through the loss of colinearity of Bhabha events via longitudinal boost)

- Effect on the Bhabha crosssection calculation (modification of the phase space and E_{CM})
- Sensitivity of selection based
 observables
 (reconstructed energy, polar
 and azimuthal angles)

- Instrumentation of the very forward region is very important for the realization of the CepC physics program. Luminosity measurement uncertainty can affect:
 - Precision of the cross-section measurements
 - Anomalous TGCs measurement
 - Single-photon production with E_{mis} (BSM, dark matter)
 - Di-photon production (various BSM models)
 - Extended theories (Z') at high energies
 - Precision EW observables at Z⁰ pole
- In most cases 10⁻³ precision of luminosity should be sufficient
- In particular, 10⁻⁴ uncertainty of integral luminosity comes from:
 - Fermion-pair production cross-section access to the higher order corrections
 - W-pair production cross-section
 - Z⁰ total hadronic cross-section at Z⁰ pole
- This a 'common knowledge', 10⁻⁴ sensitivity should be proven through the dedicated physics analyses

CEPC CDR Parameters

	Higgs	W	Z		
Number of IPs		2			
Energy (GeV)	120	80	45.5		
Circumference (km)	100				
SR loss/turn (GeV)	1.73	0.34	0.036		
Half crossing angle (mrad)	16.5				
Piwinski angle	2.58	7.74	23.8		
N_{e} /bunch (10 ¹⁰)	15	15	8.0		
Bunch number (bunch spacing)	242 (0.68us)	1220 (0.27us)	12000 (25ns+10%gap)		
Beam current (mA)	17.4	87.9	461		
SR power /beam (MW)	30	30	16.5		
Bending radius (km)		10.6			
Momentum compaction (10 ⁻⁵)		1.11			
$\beta_{IP} x/y (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015		
Emittance x/y (nm)	1.21/0.0031	0.54/0.0016	0.17/0.004		
Transverse σ_{IP} (um)	20.9/0.068	13.9/0.049	5.9/0.078		
$\xi_1/\xi_2/IP$	0.031/0.109	0.013/0.12	0.0041/0.056		
$V_{RF}(GV)$	2.17	0.47	0.1		
f_{RF} (MHz) (harmonic)		650 (216816)			
Nature bunch length σ_{c} (mm)	2.72	2.98	2.42		
Bunch length σ_{z} (mm)	3.26	6.53	8.5		
HOM power/cavity (kw)	0.54 (2cell)	0.87(2cell)	1.94(2cell)		
Energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.29	0.44	0.55		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.33 (20 min)	3.5	7.5		
F (hour glass)	0.89	0.94	0.99		
$L_{max}/\text{IP}(10^{34}\text{cm}^{-2}\text{s}^{-1})$	2.93	11.5	16.6		

19