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News from the circular colliders

CEPC
Conceplual Design Report

What is in common:
- CDRs released end-of 2018 for both CEPC and FCC
- MDI region among the most challenging at both experiments

- Flexibility to run at different CM energies (Z pole, WW
production, Higgs factory) with a common detector layout

- Maximizing luminosity, minimizing synchrotron radiation (and I ]
other) background

- Precision issues in the integral luminosity measurement (104)

- Technologies for luminometer (currently derived from ILC and
CLIC)
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https://arxiv.org/ftp/arxiv/papers/1811/1811.10545.pdf
http://cds.cern.ch/record/2651299/files/CERN-ACC-2018-0057.pdf?version=11

News from the circular colliders
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FCCee: current MDI design in the CDR and background issues
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- 30 mrad crab-crossing, L*=2.2m

- LCAL:1.074m-1.190m from the IP

- LCAL coverage: 62-88 mrad

- Target £=2-10%¢ cm™ s! (Z-pole) ~5xXLEP

- Keep the detector SR hits ‘free’ (i.e. 2.5 hits/BX in
the tracker volume @ 240 GeV)

- Less than 1073 yy —hadrons interactions per BX @ Z°
pole occurs with the yy invariant mass above 2 GeV
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The number of incoherent electrons from BS that
would reach CLD vertex detector per BX in the

solenoid 2 T field is given in the last row

Vs [GeV] 91.2 365
Total particles 800 6200
Total £ (GeV) 500 9250
Particles with pp > 5MeV and § > 8° 6 290 |

FCCee 91.2 GeV

pT (GeV)

2] (radi

10

N/ BX

fl= 102

Incoherent pairs at FCCee with maximum depositions

around 15 mrad.
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CEPC: current MDI design in the CDR and background issues
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Compensating

33 mrad double-ring x-angle, L*=2.2m

LCAL: ~1m, 26-105 mrad geometrical acceptance
(53-79 mrad fiducial volume)

680 ns, 25 ns and 210 ns bunch-spacing @ H, Z°
and WW threshold — different level of
background

SR, BS, off-momentum particles, similar as at
FCEee (first VTX layer: 2.4 particle/cm? per BX
@240GeV)
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Incoherent pair background from BS in the CEPC VTX

Ivanka Bozovic Jelisavcic



Background: off-momentum beam particles

arXiv:hep-ex/9910066v2

|

OPAL
A

Prob/0.01

Circulating beam particles can lose significant amounts of energy in scattering
processes. If exceeding 1.5% of the nominal energy scattered particles can be
kicked off their orbit. Usual mechanisms are BS, radiative Bhabha and beam- .
gas interactions. o7k A

3 T Delayed coincidence background

,—‘ In-time events

- Can influence luminosity measurement by accidental overlapping to the 5 N |
Bhabha signal and by coincidence in both detector halves that happens at the ©F K

: *
same rate as the signal. f W :
- Off-momentum particles from beam-gas interaction were the main source of : m HT

systematics in luminosity measurement at LEP (0.1-0.6-10#). Nicely regulated - T
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LumiCal acceptance region
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- Material budget in front of the LumiCal is important (left:
optimization of the beam-pipe material for CEPC CDR studies)
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- To keep the luminometer to perform, MDI materials (i.e. HOM
absorbers) must be out of the way
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(CEPC V5)

- Design of this crowded region is under study
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Background: combined

CEPC simulations shows that proper size collimators can be employed to A Rad Bkg, {5-240GeV
. . . . o r ® Combined
suppress off-momentum particles in the first VTX detector layer to 0.22 hits/cm? § U B Pair Production
per BX 3 1? A Off-Energy
5
> AA ..
Total Ionizing Dose [kRad/year], {s=240 GeV Non-Ionizing Energy Loss [l MeV ngq/cm2 - year], (s=240 GeV EE 10_15—
5 g E o
S 8 = N
” 35 10 v 35 E 10_2? A
30 10° 30 10% B
[ A
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10_3jwwlw|\\\\|\|\\‘\|\||\|\\‘\\\|
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Total ionizing and non-ionizing doses at CEPC Si subdetectors 107 ‘ e
10% AA
The challenge is to maximize performance in terms of luminosity whilst 43 A
maintaining the related background at a tolerable level T R S S

VTX Radius [cm]
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Other sources of contamination of the tracking volume

LumiCal shower leakage e

ENT

An iron cone of 5 mm thickness, positioned at cos0 = 0.992 (~120 mrad) is used to
estimate filtering of shower secondaries

Two configurations were considered:

- TUBE: Cylindrical detector shape assembled of sensor-absorber disks with
constant outer radii of 100 mm

- CONE: Shape with the outer radius r following a straight line projection from
the IP at tan 0= 0.1 (~ 6 deg.), corresponding to r_,, = 100 mmatz=1 m.

50 GeV electrons 125 GeV electrons
TUBE CONE TUBE CONE - There is a larger shower leakage (mostl
9 (mrad) Nenter /Npass Nenter /Npass Nenter /Npass Nenter /Npass g g y

40 15.4/5.6 13.6/5.8 38.0/16.0  35.8/14.7 partcles < 100 MeV) for all electron
90 392/155 1'73/76 1028/399  434/19.7 energies for the CONE configuration, due
95 501/290 367/152 2389/720 937/382 . )
03 262/216 260/284 719473 21761795 to the fact that shower is developing at
99 553/140 1331/367 1102/273 3306/915 larger O

- 5 mm Fe-cone reduces the number of

Table 1: Number of particles leaking out of the LumiCal outer radius (Neneer ) and number .
P s e secondaries up to 75%

of particles passing through the Fe-cone (Npass ). Two different detector designs (TUBE and
CONE) and two shower energies (50 GeV and 125 GeV) are simulated.
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LumiCal technologies

Si or diamond layer in front of the luminometer seems to be
a viable option to enable:

calibration

e/y separation

polar angle measurement with precision equivalent to 1
um radial uncertainty

LumiCal technology options are open (CEPC and FCCee)
Si-W ‘ILC-like” sandwich is an option

But, is a detector with a simpler readout possible?

Diamondrings

IP o<100 um ID hits above/below edges Fine segmentation of

BGO crystal

Readout and assembly of SiW detector

Coarse segmentation, electronics, search

feasible readout chips

compact

Detector technology is still open, but, it is clear that
performance in terms of energy and polar angle

measurement will play a key role in the control of systematics.
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A

\ Use diamond

IP is measured by Ring edges
Z>ff Oo calibrate

FEIA TR B0 2 LA E 4R PE EE2000um (0T AHEER - Sl LA R
80um + A A FLA @ ] 47 150um

Industry studies with Ag wire bonding 80 um
high. Courtesy: S. Hou
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Alternative technological options

- Si-W ‘ILC-like’

- BGO (has a bunch spacing of 25
nsis an issue at Z° pole CEPC);

- Lutetium Yttrium Orthosilicate mmp
(Lu,SiOs:Ce) may works in a CMS-
like shashlik type of calorimeter

- SciFi spaghetti calorimeter with
individually ~ read-out  fibers
(prototyped for J-PARC K|
experiment)

~6 X,
PMT cCcb

Number of fiber-hits and the energy
deposit measured by PMT

Linear correlation

&

Good light output - 70% of
Nal(Tl), High density -

7.15 g/cm3

Fast decay times - ¢c.45ns
Energy resolution - <12%
Not hygroscopic

Are relatively inexpensive

Energy deposit can be measured http://www.nda.ac.jp/cc/radiati
by just counting the number of fiber on/presen/DPF2006_toru.pdf
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nhwNR

Courtesy: S. Hou

Shashlik style module configuration

Photosens:
Local or
Remote

Transverse size of modules ~ % Swiss Franc

Radiation hardness
Use of dense materials
Small Moliére Radius
Rad-hard materials
Short optical paths

Rad-resistant, small pixel
photosensor
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Challenges for luminosity measurement: systematics

Some requirements are on the technological limit:

Detector positioning and beam related

uncertainties have to be strictly controlled (down:
is AL/L=103 per uncertainty at 240 GeV CEPC)

Luminometer has to be centered at the outgoing
beam to ‘naturally’ apply asymmetric acceptance
selection (LEP style) and thus relax systematics

AL/L=1073
Parameter Unit Limit
AEewm MeV 120
E+—FE- MeV 240
00 Eveam effect canceled
O Ebeam
Axp mm <1
Azp mm 10
Beam synchronization — ps 7
Topp mm
Top mm 10
Tin mm 10
T ghonver mm 1
Adyp um 500
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Inner radius of the luminometer: ~1 um (4.4 um at OPAL
contributing 1.4-10% uncertainty in L)

Distance between calorimeters ~“80 um over app. 1m.
Should be easily achieved with FSI.

AE¢, and beam asymmetry at the level of a few MeV for
the cross-section calculation (2.7-10* at LEP in AE) but
some relevant processes might have the same x-section
dependence with \s as Bhabha in which case the effect

cancels out.

Parameter unit | limit AL/L=10%

AEcMm  MeV Q

E,.—E, MeV | 11

% Negligible up to
OF peam at least factor 2

AXTP mm | 0.5

Azip mm | 2

Beam synchronisation | ps 3

Op mm | 0.5

Op mm_| 7

Fin pm 1

Or hower m 0.2

AdLC m 80

A mrad | 0.8
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Challenges for luminosity measurement: systematics

Inner radius of the luminometer . -, ' o ]
~50.004F & -
- Uncertainty of the inner radius translates into counting Z - .
uncertainty since the Bhabha cross-section scales like 1/63 0.002 . @ E
0 -+ Fiduemr =~ -*-@ ----------- -
[ e Ar,,=1.0mm : ]
~0.002 :_ * Arg,=2.0mm _:
Symmetric bias on beam energy: 0,004 * A =40mm 0 ]
Colliding beam energies can be symmetrically shifted for AE, T 7 S o R X B RN
resulting in 2-AE shift in CM energy Ar, (mm)
- Bhabha cross-section changes as ~1/s = relative uncertainty on e
(average net) CM energy <5 - 10 2 Ofwgomm e mmmm oo ]
~ | . i
- Counting bias due to the acceptance cut on energy is negligible %m Kttt 0 i
~0.002 f ! ¢ -
Asymmetric bias on beam energy: [ ! I
[E,-E|= AE = B,= AE/Ey, B E :
* Argy=10mm | -
- Longitudinal boost of the CM frame of the colliding particles . Ar :=2.o o ! -
to the lab frame 3, 0006 « Ar,=40mm ' ]
= counting loss due to the loss of acolinearity [ | | | ]
- Asymmetry in beam energies should be smaller than 103 0 0.0005 0.001 0.0015  0.002
B,
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Challenges for luminosity measurement: systematics

2- y physics background 8 107 E
Initial contamination (without any selection) of the detector S E
volume is ~10 w.r.t. the signal at 240 GeV CEPC z =

- B/S ~ 10 times smaller than at 500 GeV ILC. This is mostly due 100 F 1 E
to the Bhabha x-section dependence as 1/s, while 2-y x-section 10°
is scaling like In?(s) ) ’ =

- Similar situation should be at FCCee Higgs factory 10 L :

1 . |3

- With the relative energy E,>0.8, B/S ratio is ~ 8-10

o
A
o
o
o
o

1
(E1+E2)/240 GeV

EM deflection of Bhabha particles

- Outgoing Bhabha electrons/positrons can be deflected towards
lower polar angles due to interaction with incoming bunches

- Like with BS, the EM field depends on a bunch transverse sizes:
~1/(o +0o y)

- The effect is at a % level at ILC at Z, pole (left), meaning that it
will be of the order of 10-3 at 240 GeV CEPC and ~3- 103 at Z°

pole, just on the basis of the beam parameters.
- This requires consideration for a precision goal of AL/L=10"%

—(BHSE) (%)

0 TR T T T S S EO R
100 150 200 250 300 350 400 450 3500 350 600

Vs (GeV)
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Summary & Possible FCAL contribution

- Instrumentation of the very forward region is very important for realization of
physics program at any future machine

- Circular colliders (CEPC and FCCee) are facing particular challenges to reach
luminosity precision goal of 10* (of particular importance at the Z° pole),
where the most critical challenges are coming from mechanics and MDI

- Many issues are in common between CEPC and FCCee (also with linear
colliders)

» LumiCal technology options are open
» Readout is a challenge, as well as assembling and prototyping

» If the FCAL Collaboration is interested, it’s a great space to contribute
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A long list of sources of integral luminosity systematic uncertainties:

1.

Beam related:
Uncertainty of the average net CM energy
Uncertainty of the asymmetry in energy of the e* and e beam
Uncertainty of the beam energy spread
IP position displacement and fluctuations w.r.t. the LumiCal, finite beam sizes at
the IP
Uncertainty of the (eventual) beam polarization

2. Detector related:

Uncertainty of the LumiCal inner radius

Positioning of the LumiCal (longitudinal L-R distance)

Mechanical fluctuations of the LumiCal position w.r.t the IP (vibrations, thermal
stress)

Tilt and twist of the calorimeters

Uncertainty of the sampling term

Detector performance: energy and polar angle resolution

3. Physics interactions:

Bhabha and physics background cross-section (uncertainty of the count)

Bhabha acolinearity — other sources of the acceptance losses (ISR and FSR,
Beamstrahlung)

Machine-related backgrounds (off-momentum electrons from the beam-gas
scattering)

Uncertainty of count is based on:

(either directly or through the
loss of colinearity of Bhabha
events via longitudinal boost)

(modification of the phase
space and E¢)

(reconstructed energy, polar
and azimuthal angles)
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Instrumentation of the very forward region is very important for the realization of the CepC
physics program. Luminosity measurement uncertainty can affect:

- Precision of the cross-section measurements

- Anomalous TGCs measurement

- Single-photon production with E_ .. (BSM, dark matter)
- Di-photon production (various BSM models)

- Extended theories (Z’) at high energies

- Precision EW observables at Z°pole

In most cases 1073 precision of luminosity should be sufficient

In particular, 10-*uncertainty of integral luminosity comes from:
- Fermion-pair production cross-section - access to the higher order corrections
- W-pair production cross-section
- Z%total hadronic cross-section at Z° pole

This a ‘common knowledge’, 10 sensitivity should be proven through the dedicated physics
analyses



CEPC CDR Parameters

Higgs w Z
Number of IPs 2
Energy (GeV) 120 80 | 45.5
Circumference (km) 100
SR loss/turn (GeV) 1.73 0.34 [ 0.036
Half crossing angle (mrad) 16.5
Piwinski angle 2.58 7.74 23.8
N /bunch (10'%) 15 15 8.0
Bunch number (bunch spacing) 242 (0.68us) 1220 (0.27us) 12000

(25ns+10%gap)

Beam current (mA) 17.4 87.9 461
SR power /beam (MW) 30 30 16.5
Bending radius (km) 10.6
Momentum compaction (10-%) 1.11
Bip xly (M) 0.36/0.0015 0.36/0.0015 0.2/0.0015
Emittance x/y (nm) 1.21/0.0031 0.54/0.0016 0.17/0.004
Transverse o, (um) 20.9/0.068 13.9/0.049 5.9/0.078
EJE/IP 0.031/0.109 0.013/0.12 0.0041/0.056
Ve (GV) 2.17 0.47 0.1
f pr (MHz) (harmonic) 650 (216816)
Nature bunch length . (mm) 272 2.98 2.42
Bunch length &. (mm) 3.26 6.53 8.5
HOM power/cavity (kw) 0.54 (2cell) 0.87(2cell) 1.94(2c¢ell)
Enerey spread (%) 0.1 0.066 0.038
Energy acceptance requirement (%) 1.35 0.4 0.23
Energy acceptance by RF (%) 2.06 1.47 | &y
Photon number due to beamstrahlung 0.29 0.44 0.55
Lifetime _simulation (min) 100
Lifetime (hour) 0.33 (20 min) %5 7.5
F (hour glass) 0.89 0.94 0.99
L, JIP (103*c¢ms") 2.93 11.5 16.6
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