

National Research Tomsk State University

Capability of FEL TSU in the field of HR GaAs:Cr sensor technology

Anton Tyazhev

Functional electronics laboratory, Tomsk State University

R&D activities of FEL TSU

- Superfast GaAs avalanche switches
- Nonlinear crystal growth and terahertz spectroscopy
- Semiconductor sensors of different gases
- HR GaAs:Cr sensors of ionizing radiation

HR GaAs:Cr sensor technology

Charge carrier (CC) mapping. LEC n-GaAs

wafer # 1, seed end

wafer # 132, tail end

4 inches LEC n-GaAs ingot

Technology of HR GaAs:Cr

IR transmission image

Contactless mapping of photoconductivity

3 inches LEC HR GaAs:Cr

Contactless characterization of HR GaAs:Cr wafers

4 inches LEC HR GaAs:Cr

HR GaAs:Cr sensors Pixel sensors: pitch size – down to 35 µm, number of pixels – up to 512x1536 at 55 µm pitch Au (0.1 μm) $SiO_{2}(0.15 \,\mu m)$ Cr-Au (0.15 µm) V (0.05 µm) Ni $(2 \mu m)$ **Cr-Cu** (0.3 μm) $SiO_2(0.15 \ \mu m)$ Ni(0.5 um) GaAs:Cr GaAs:Cr Al $(1 \mu m)$ Ni (1 µm) Pitch -55 µm, UBM-20 µm Pitch -55 µm, UBM-30 µm

HR GaAs:Cr sensors

UBM for PbSn bump bonding @200 °C

UBM for In bump bonding @ RT

HR GaAs:Cr sensors

Strip sensors: pitch size – down to 50 µm, number of channels– up to 1800

Pitch -50 μ m, strip width-25 μ m

Pixelated wafer capacity

Double HEXA pixel sensor on HR GaAs:Cr 4 inch wafer

HR GaAs:Cr sector sensor for β -particle registration

6

Technology center

You Are Welcome to FEL!

Clean rooms

Resistivity

Photoconductivity

We check wafer before shipping

Spatial resolution of 256×256 HR GaAs Timepix ASIC pixel detector

Image of a lead 'besom test' pattern

Image of a line pair pattern. The numbers indicate spatial frequencies in mm⁻¹

Procured by E. Hamann (IPS, Karlsruhe Institute of Technology, Germany)

X-ray images of test objects

Flatfield corrected X-ray image of an integrated circuit on a PCB¹

Flatfield corrected image of a lead test pattern for spatial resolution tests ¹

1- http://iopscience.iop.org/1742-6596/425/6/062015, E Hamann et al.

MPX3 assembly 25 kV - 200 V TH0 6 keV

Procured by Simon Procz, FMF, Albert-Ludwigs-University, Germany

MTF for all combinations of photon energies and threshold levels*

Photon energy:	10 keV	15 keV	15 keV	25 keV	25 keV	25 keV
Threshold:	8.5 keV	8.5 keV	12 keV	8.5 keV	12 keV	15 keV
70% MTF	9 mm ⁻¹	6.8 mm ⁻¹	9.5 mm ⁻¹	6.2 mm ⁻¹	7.5 mm ⁻¹	8.7 mm ⁻¹
30% MTF	16.5 mm ⁻¹	12.5 mm ⁻¹	17.5 mm ⁻¹	11.4 mm ⁻¹	13.8 mm ⁻¹	15.9 mm ⁻¹
MTF @ f _{Nyquist}	69%	53%	72%	46%	59%	67%

*E. Hamann "Characterization of High Resistivity GaAs as Sensor Material for Photon Counting Semiconductor Pixel Detectors", PhD thesis, University of Freiburg, 2013

500 um thick HR GaAs:Cr & Medipix3RX ASIC

E. Hamann "Characterization of High Resistivity GaAs as Sensor Material for Photon Counting Semiconductor Pixel Detectors", PhD thesis, University of Freiburg, 2013

X-ray spectroscopic images of test objects

Bottom capillary: iodine (250 µmol/ml); Left: iodine (50 µmol/ml); Top: gadolinium (250 µmol/ml); Right: gadolinium (50 µmol/ml)

E. Hamann et al. Performance of a Medipix3RX Spectroscopic Pixel Detector With a High-Resistivity Gallium Arsenide Sensor, IEEE Transactions on Medical Imaging, Volume 34, Issue 3, 2015, Article number 6797893, Pages 707-715, DOI : 10.1109/TMI.2014.2317314

500 um thick HR GaAs:Cr & HEXITEC ASIC

M.C. Veale et al. "Chromium compensated gallium arsenide detectors for X-ray and γ-ray spectroscopic imaging", Nuclear Instruments and Methods in Physics Research, A752 (2014) 6–14

Table 9.1: Energy resolution (absolute and relative FWHM) of the CSM peaks for different photon energies as shown in Figure 9.13 b) and a Cd-109 source.

Photon energy / keV	8	15	22.5	25	40
FWHM / keV	2.8	3.4	4.34	4.16	4.5
FWHM / %	34.6	22.8	19.3	16.7	11.2

E. Hamann "Characterization of High Resistivity GaAs as Sensor Material for Photon Counting Semiconductor Pixel Detectors", PhD thesis, University of Freiburg, 2013

1.7GeV proton exposure

Dependence of the pulse height distribution on the absorbed dose.

Dependence of the charge collection efficiency on the absorbed dose.

Irradiation with 1.25 MeV γ -quanta

Irradiation with 12 KeV γ-quanta

The spectrum of the 12 keV measured before and after a 1 MGy exposure, HR GaAs:Cr + HEXITEC ASIC detector

*M. C. Veale et all "Investigating the suitability of GaAs:Cr material for high flux X-ray imaging", Journal of Instrumentation. DOI: 10.1088/1748-0221/9/12/C12047

Irradiation with 8-10 MeV β-particles

K. Afanaciev et al., JINST, 2012, Investigation of the radiation hardness of GaAs sensors in an electron beam doi:10.1088/1748-0221/7/11/P11022

Summary & perspectives

- Technologies of 4 inches HR GaAs:Cr wafers and pixel sensors
- Technology of «low Z» metal contact for HR GaAs:Cr sensors (1 um, Al)
- Wire bonding of sensors with sizes of bonding pads of 60×100 um²
- In co-operation with JINR (Dubna, Russia):
- Improvement of HR GaAs:Cr material technology to increase radiation hardness for β - particles
- Investigation of radiation hardness of improved HR GaAs:Cr pad sensors irradiated with β - particles

Thank you for your listening!

Superfast GaAs avalanche switches

Application:

Compact generators of short pulses for ultrawideband and optical rangefinders, ultrawideband radars, and lidars (*LiDAR for 3D Mapping, LiDAR for Non-Automotive Autonomous Vehicle, Laser Scanners, Fiber Optic Integrity Instruments*).

Nonlinear crystal growth and terahertz spectroscopy

1. Growth and study of properties and applications of nonlinear optical materials like GaSe, $CdSiP_2$, Ga_2O_3

2. Terahertz time-domain spectroscopy and components (photomixers, dipole antennas, filters etc.)

3. Terahertz emission spectroscopy of semiconductor surfaces.

4. Designing of element and material science basis for THz range (non-linear crystal growth, dipole antennas, filters and absorbers).

5. Designing of tunable sources of cw and pulsed terahertz and IR radiation.

6. Synthesis and study of of nanolayered (quasi -2D) systems of III-VI semiconductor compounds (GaSe, GaTe, InSe и GaS).

Nonlinear crystal growth and terahertz spectroscopy

Designing and study of photoconductive dipole antennas and terahertz filters

Nazarov M.M., Zarubin A.N., Sarkisov S.Y., Tolbanov O.P., Tyazhev A.V// Russian Phys. J. – 2015. – vol. 58, N 4. - pp. 562-566.

Hegenbarth R., Steinmann A., Sarkisov S., Giessen H. // Opt. Lett. – 2012. – vol. 37, N 17. - pp. 3513-3515.

Tyazhev A.V., Nazarov M.M., Shkurinov A.P. // Russian Phys. J. - 2013. - vol. 55, N 8. - pp. 890-898.

Sarkisov S.Y., Safiullin F.D., Skakunov M.S., Tolbanov O.P.,

Emission terahertz spectroscopy of semiconductor structures

Prudaev I., Sarkisov S., Tolbanov O., Kosobutsky A. // Phys. Stat. Sol. B. - 2015. - vol. 252, N 5. - P. 946-951.

Nonlinear crystal growth and terahertz spectroscopy

Designing of growth technology and modification of properties of nonlinear optical crystals CdGeAs₂, CdSiP₂, ZnGeP₂, GaSe etc.

Atuchin V.V., Bereznaya S.A., Beisel N.F., Korotchenko Z.V., Kruchinin V.N., Pokrovsky L.D., Saprykin A.I., Sarkisov S.Yu. // Mat. Chem. Phys. – 2014. – vol. 146. - P. 12-17.

Refractive index

Study of terahertz dielectric properties and applications of mixed $GaSe_{1-x}S_x$ and $GaSe_{1-x}Te_x$ crystals

Nazarov M.M., Sarkisov S.Yu., Shkurinov A.P., Tolbanov O.P.// Appl. Phys. Lett. – 2011. – vol. 99. - P. 081105.

Synthesis and study of nanolayered (quasi -2D) systems of III-VI semiconductor compounds (GaSe, GaTe, InSe и

Thin films semiconductor sensors of different gases

- Sensors of low concentration of nitrogen <u>oxides</u>
- search of sensor material (metal oxides, chalcogenides, plasmonic sensors)

- Development of hydrogen test method for analysis of expired mixture
- diagnosis of lactose intolerance
- Tin dioxide sensors

Laboratory of Functional Electronics Almaev Aleksei Associate research, Ph.D. +7 (923) 437 08 33 almaev_alex@mail.ru 634050, Russia, Tomsk, Lytkina str., 28 g The dependence of the sensor response on the H_2 concentration, T_2 =400 °C, RH=40% 1-Pt/Pd/SnO₂:Sb,Ag,Y 2-Ag/SnO₂:Sb,Ag,Y

Advanced sensor materials for gas analysis

- Oxygen sensors based on thin films of gallium oxide
- DC magnetron sputtering
- $Ga_2O_3:Si, Ga_2O_3:Cr$
- Operating temperature 300 700 °C
- Concentration range 0 100 vol. %

- Research of the spectral characteristics of noise of the metal oxides thin films on exposure to gases
- The measured resistance of the sensors is an integral value; a lot of work need to the development of reliable ways to separate the responses of sensors to different gases using a resistive method of gas detection. It is known that the adsorption desorption processes of gases on the surface of semiconductors are stochastic in nature, which generates the so-called A-D noise. It is proposed to use the analysis of spectral characteristics of noise of thin films of metal oxide semiconductors instead of measuring the resistance of sensors for gas detection.
 - Development of selective gas sensors based on metal oxides

Areas of application

Band gap modification

