Update of the forward calorimeter reconstruction at CLIC

André Sailer
CERN-EP-LCD

FCal Collaboration Workshop
March 26-27, 2019

Outline

Focusing on LumiCal reconstruction

1 Introduction and Previous Studies

2 Polar Angle Reconstruction

- Polar Bias at Different Energies

3 Summary and Outlook

Forward Calorimeters

■ Performance studies of the LumiCal and BeamCal detector and reconstruction software
■ LumiCal: radial pads: 64, $\Delta_{\theta}=1.47 \mathrm{mrad}$

$Z_{\text {start }}[\mathrm{mm}] \quad Z_{\text {end }}[\mathrm{mm}] \quad R_{\text {in }}[\mathrm{mm}] \quad R_{\text {out }}[\mathrm{mm}] \quad \theta_{\text {min }}[\mathrm{mrad}] \quad \theta_{\text {max }}[\mathrm{mrad}]$

LumiCal	2539	2710	100	340	39	134
BeamCal	3181	3441	32	150	10	46

Previously...

Previously reported polar angle reconstruction for LumiCal:

- resolution $\sigma_{\theta}=20 \mu \mathrm{rad}$
- bias δ_{θ} fluctuating from $\approx-2 \mu$ rad to $20 \mu \mathrm{rad}$
- Same result with

LumiCalClusterer or
BeamCalClusterReco

- depends on where in the LumiCal pad layout the shower has its core ... this time, looking more systematically at polar angle reconstruction in LumiCal

Previously...

Previously reported polar angle reconstruction for LumiCal:

- resolution $\sigma_{\theta}=20 \mu \mathrm{rad}$
- bias δ_{θ} fluctuating from $\approx-2 \mu$ rad to $20 \mu \mathrm{rad}$
- Same result with

LumiCalClusterer or
BeamCalClusterReco

- depends on where in the LumiCal pad layout the shower has its core ...this time, looking more systematically at polar angle reconstruction in LumiCal

bias in the angular measurements (systematic shift to be quantified)
(From W. Lohmann: Introduction to the Workshop)

Reconstruction and Simulation

- Simulation done using LCGEO and DD4HEP
- Reconstruction done with BeamCalClusterReco from the FCALCLUSTERER package based on MARLIN
- LumiCal from the CLIC_o3_v14 detector model
- 100k electrons with fixed 1.5 TeV from 60 mrad to 80 mrad , flat in theta
- All angles given in the LumiCal frame of reference
- Averages and variances calculated from distribution, no fits done
- Calculations done with boost: : accumulators or ROOT: :TProfile

Polar Angle Reconstruction I

- Logarithmic weighting of pad energy
E_{i} divided by cluster energy $E_{\text {tot }}$

$$
\begin{equation*}
w_{i}=\max \left(0, C_{\mathrm{log}}+\log \left(E_{i} / E_{\mathrm{tot}}\right)\right) \tag{1}
\end{equation*}
$$

- Scanning over $C_{\text {log }}$ lets us find optimal value with minimal resolution: $C_{\text {log }}=6.7$
- Bias strongly increases with growing $C_{\text {log }}$
- Optimum $C_{\text {log }}=6.0, \sigma_{\theta}=27 \mu \mathrm{rad}$, $\delta_{\theta}=17 \mu \mathrm{rad}$

Polar Angle Reconstruction II

- LumiCal sensor pad area grows with increasing radius

$$
\begin{equation*}
A(R)=\frac{\phi}{2}\left(2 R \Delta_{\mathrm{R}}+\Delta_{\mathrm{R}}^{2}\right) \tag{2}
\end{equation*}
$$

- Scale weight from eq. (1)

$$
\begin{equation*}
w_{i}^{S 1}=\max \left(0, \frac{A\left(R_{\min }\right)}{A\left(R_{\mathrm{pad}}\right)}\left(C_{\mathrm{log}}+\log \left(\frac{E_{i}}{E_{\mathrm{tot}}}\right)\right)\right) \tag{3}
\end{equation*}
$$

(yes, actually multiplying w, not just the result of log, not sure if this is a bug or feature)

- ϕ cancels, $\Delta_{R}^{2} \ll 2 R \Delta_{R}$, basically scaling $R_{\min } / R$
- Optimum $C_{\text {log }}=6.1, \sigma_{\theta}=20 \mu \mathrm{rad}$,
 $\delta_{\theta}=6 \mu \mathrm{rad}$
- Better resolution, smaller bias

Polar Angle Reconstruction III

- Scale energy ratio from eq. (1)

$$
\begin{equation*}
w_{i}^{S 2}=\max \left(0, C_{\mathrm{log}}+\log \left(\frac{E_{i}}{E_{\mathrm{tot}}} \frac{A\left(R_{\min }\right)}{A\left(R_{\mathrm{pad}}\right)}\right)\right) \tag{4}
\end{equation*}
$$

- Different scaling moves curves with respect to $C_{\text {log }}$
- Optimum $C_{\text {log }}=6.7, \sigma_{\theta}=20 \mu \mathrm{rad}$, $\delta_{\theta}=-2 \mu \mathrm{rad}$
- I also tried this before, but did not scan full $C_{\text {log }}$ range, so discarded then, but actually this makes more
 sense

Polar Angle Bias

- Achieved very small average bias, but polar angle bias depends on polar angle
- Luminosity measurement depends on the bias at the edges of the fiducial volume
- Can we correct for this behaviour. . .

Correcting Polar Angle Bias I

■ Define κ as the difference in the energy of the shower above and below the reconstructed polar angle

$$
\kappa=\frac{E_{\text {Above }}-E_{\text {Below }}}{E_{\text {Above }}+E_{\text {Below }}}
$$

- Split the energy in the central ring around the reconstructed polar angle into above and below
■ κ shows similar behaviour to δ_{θ}, due to definition shifted by half a phase

Correcting Polar Angle Bias I

- Define κ as the difference in the energy of the shower above and below the reconstructed polar angle

$$
\begin{equation*}
\kappa=\frac{E_{\text {Above }}-E_{\text {Below }}}{E_{\text {Above }}+E_{\text {Below }}} \tag{5}
\end{equation*}
$$

- Split the energy in the central ring around the reconstructed polar angle into above and below
- κ shows similar behaviour to δ_{θ}, due to definition shifted by half a phase

Correcting Polar Angle Bias I

- Define κ as the difference in the energy of the shower above and below the reconstructed polar angle

$$
\begin{equation*}
\kappa=\frac{E_{\text {Above }}-E_{\text {Below }}}{E_{\text {Above }}+E_{\text {Below }}} \tag{5}
\end{equation*}
$$

- Split the energy in the central ring around the reconstructed polar angle into above and below
■ κ shows similar behaviour to δ_{θ}, due to definition shifted by half a phase
- Use linear function the obtain relation ship between κ and δ_{θ},
 contains MC information
- Not really great correlation, very broad in δ_{θ}

Correcting Polar Angle Bias II

- Use fitted relation between κ and δ_{θ} to correct polar angle
- Before:
- $\sigma_{\theta}=20.6 \mu \mathrm{rad}$
- $\delta_{\theta}=-2.7 \mu \mathrm{rad}$
- After:
- $\sigma_{\theta}=19.0 \mu \mathrm{rad}$
- $\delta_{\theta}=0.05 \mu \mathrm{rad}$
- While it reduces the average bias, and somewhat the amplitude, the behaviour is still not flat
- Needs further work, maybe a
 correction depending on κ and $\theta_{\text {reco }}$
- Interested to see work by A. Joffe

Correcting Polar Angle Bias II

- Use fitted relation between κ and δ_{θ} to correct polar angle
- Before:
- $\sigma_{\theta}=20.6 \mu \mathrm{rad}$
- $\delta_{\theta}=-2.7 \mu \mathrm{rad}$
- After:
- $\sigma_{\theta}=19.0 \mu \mathrm{rad}$
- $\delta_{\theta}=0.05 \mu \mathrm{rad}$
- While it reduces the average bias, and somewhat the amplitude, the behaviour is still not flat
- Needs further work, maybe a
 correction depending on κ and $\theta_{\text {reco }}$
- Interested to see work by A. Joffe

Correcting Polar Angle Bias II

- Use fitted relation between κ and δ_{θ} to correct polar angle
- Before:
- $\sigma_{\theta}=20.6 \mu \mathrm{rad}$
- $\delta_{\theta}=-2.7 \mu \mathrm{rad}$
- After:
- $\sigma_{\theta}=19.0 \mu \mathrm{rad}$
- $\delta_{\theta}=0.05 \mu \mathrm{rad}$
- While it reduces the average bias, and somewhat the amplitude, the behaviour is still not flat
- Needs further work, maybe a
 correction depending on κ and $\theta_{\text {reco }}$
- Interested to see work by A. Joffe

Polar Bias at Different Energies

- Following up to yesterday's presentations, brief look also at different energies: 45.6 GeV and 250 GeV

■ Using the same CLIC_o3_v14 detector model, same reconstruction parameters

- Larger radial pad sizes in the CLIC LumiCal lead to worse resolution than in LumiCal's optimised for different detectors

45.6 GeV

- Bias becomes larger with scaling according to eq. (4)
- Need to implement a flag to chose which scaling to use

45.6 GeV

- Bias becomes larger with scaling according to eq. (4)
- Need to implement a flag to chose which scaling to use
- Also for these electrons, polar angle bias depends on polar angle, at least in this geometry

250 GeV

■ For 250 GeV eq. (4) gives smaller bias

250 GeV

■ For 250 GeV eq. (4) gives smaller bias

- And also fluctuation depending on polar angle

Summary and Outlook

- Depending on the weighting used to reconstruct polar angle, resolution and bias can be greatly affected
- Average polar angle bias can be reduced to so μ rad levels for CLIC LumiCal at 1.5 TeV
- Further work needed to reduce the polar angle dependent bias
- Study performance of LumiCal and BeamCal reconstruction with combined $\gamma \rightarrow$ hadron and incoherent pair backgrounds

Backup Slides

Polar Angle Reconstruction

LCD-Note-2009-002, 1.5 TeV electrons, LumiCal for CLIC

I. Sadeh, MsC, 250 GeV electrons, LumiCal for ILC

