

New physics in kaon and beam-dump experiments

3rd December 2018, University of Birmingham

The NA62 physics programme at CERN

Angela Romano, University of Birmingham

NA62: a general purpose NA62 experiment

High precision fixed-target Kaon experiment at CERN SPS

Highest energy proton beam delivered for fixed-target exp in the world

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

The NA62 Detector

SPS proton beam on Be target:

- 400 GeV/c, 3×10¹²/spill
- ~10¹⁸ protons on target/year
- $\sim 5 \times 10^{12} \,\mathrm{K}^+ \,\mathrm{decays/year}$ in FV

[NA62 Detector Paper, 2017 JINST 12 P05025]

Detectors for decay products

- > Secondary un-separated hadron ($\pi^+/K^+/p$) beam
- > **800MHz** beam rate @GTK (45MHz K⁺ component)
- $ightharpoonup K^+$: 75GeV/c (±1%), divergence < 100 μ rad
- > ~10% of K⁺ decays in ~60m Fiducial Volume (FV)

The NA62 Detector

SPS proton beam on Be target:

- 400 GeV/c, 3×10¹²/spill
- ~10¹⁸ protons on target/year
- $\sim 5 \times 10^{12} \,\mathrm{K}^+ \,\mathrm{decays/year}$ in FV

[NA62 Detector Paper, 2017 JINST 12 P05025]

Detectors for decay products

Performances:

- Excellent time resolution **O(100 ps)** to match beam/daugther particle info
- \rightarrow Kinematic rejection factors: ~10⁻⁴ for K⁺ $\rightarrow \pi^+\pi^0$, K $\rightarrow \mu^+\nu$ bkg channels
- Particle ID: ~10⁻⁷ μ suppression for 15 < $p(\pi^+)$ < 35 GeV/c
- \rightarrow Hermetic photon veto: ~10⁻⁸ rejection of $\pi^0 \rightarrow \gamma \gamma$ for E(π^0)>40GeV

The NA62 Detector

- ~10¹⁸ protons on target/year

~5×10¹² K⁺ decays/year in FV

[NA62 Detector Paper, 2017 JINST 12 P05025]

Detectors for decay products

High-intensity setup, trigger system flexibility and detector performances make

NA62 particularly suitable to search for NP effects from different scenarios

NA62 Physics Programme beyond K→πνν

Standard Kaon Physics

- ➤ Measurements of the BR of all the main K⁺ decay modes
- $\triangleright \chi \text{PT: } K^+ \rightarrow \pi^+ \gamma \gamma, K^+ \rightarrow \pi^+ \pi^0 e^+ e^-, K^+ \rightarrow \pi^0 (^+) \pi^0 (^-) l^+ \nu$
- \triangleright Lepton Universality: $R_K = \Gamma(K^+ \rightarrow e^+ \nu_e)/(K^+ \rightarrow \mu^+ \nu_\mu)$

• Rare/forbidden K⁺ and π^0 decays at SES ~10⁻¹²:

- \mathbf{K}^+ physics: $\mathbf{K}^+ \rightarrow \pi^+ \ell^+ \ell^-$, $\mathbf{K}^+ \rightarrow \pi^+ \gamma \ell^+ \ell^-$, $\mathbf{K}^+ \rightarrow \ell^+ \nu \gamma$,
- LFV-LNV searches: $K^+ \rightarrow \pi^+ \mu^{\pm} e^{\mp}$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- l^+ l^+$, ...
- π^0 physics: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$, $\pi^0 \rightarrow e^+ e^- e^+ e^-$, $\pi^0 \rightarrow \gamma \gamma \gamma (\gamma)$, ...

Exotics searches

- \triangleright Heavy Neutral Lepton (HNL) production from $K^+ \rightarrow l^+ \nu_h$
- \triangleright Dark Photon (A') $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, A' \rightarrow invisible

Recent Results

K⁺ →e⁺v: Lepton Universality

25% 2017 Data: $N_K = 3 \times 10^{11}$, world largest sample of $K^+ \rightarrow e^+ v \ 4 \times 10^5$

Study of lepton universality in K:

$$R_K \equiv \Gamma(K^+ \to e^+ \nu) / \Gamma(K^+ \to \mu^+ \nu)$$

Theory (SM):

$$R_K = (2.477 \pm 0.001) \times 10^{-5}$$

[Phys. Rev. Lett. 99 (2007) 231801]

Experimental Status (2007 NA62):

$$R_K = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5}$$

[Phys. Lett. B 719 (2013) 326]

- NA62 Present: novel method to measure R_K using $\mu^+ \to e^+ \nu \bar{\nu}$ for normalization
- No systematics uncertainties that limited the 2007 NA62 measurement

Aim: R_K measurement at sub-percent level precision

K⁺ → π⁺μ⁺μ⁻

50% 2016 + 25% 2017 Data: $N_K = 6.3 \times 10^{11}$

- World-largest $K^+ \rightarrow \pi^+ \mu^+ \mu^-$: $\sim 4.6 \times 10^3$ events $(BR \sim 10^{-7})$
- Wxpected 10K; competitive measurement
- Search for $K^+ \to \pi^- \mu^+ \mu^+$ is not limited by background: SES = 2×10^{-11}
- Sensitivity to $K^+ \to \pi^+ S$, $S \to \mu^+ \mu^-$: SES $\sim 10^{-10}$ for lifetimes up to $\mathcal{O}(1 \text{ ns})$

K⁺ → π⁺e⁺e⁻

50% 2016 + 25% 2017 Data: $N_K = 1.3 \times 10^{11}$

- Background free $\sim 1.1 \times 10^3$ events for $m_{ee} > 140$ MeV/c² ($BR \sim 3 \times 10^{-7}$)
- First observation at $m_{ee} < 140 \text{ MeV/c}^2$
- Sensitivity to BR(K⁺ $\to \pi^+ X$)BR(X $\to e^+ e^-$), $10 < m_X < 100 \text{ MeV/c}^2 : \mathcal{O}(10^{-9})$
- Search for $K^+ \to \pi^- e^+ e^+$ is not limited by background: SES = 2×10^{-10}

Forbidden K⁺ decays at NA62

Goal: improve over most existing limits (mainly from BNL E865, E777).

- ❖ Search for the LNV decay $K^+ \rightarrow \pi^- \mu^+ \mu^+$ [BR<8.6×10⁻¹¹, NA48/2@CERN]
- ❖ Search for the LNV decay $K^+ \rightarrow \pi^- e^+ e^+$ [BR<6.4×10⁻¹⁰]
- ❖ Searches for LNV/LFV decays K⁺→πμe, including π^0 →μe. [BR($\pi^-\mu^+e^+$)<5.0×10⁻¹⁰; BR($\pi^+\mu^-e^+$)<5.2×10⁻¹⁰; BR($\pi^+\mu^+e^-$)<1.3×10⁻¹¹] [BR(π^0 → $\mu^\pm e^\mp$)<3.6×10⁻¹⁰, kTeV@FNAL]
- ❖ Searches for K⁺→ μ - ν e⁺e⁺ and K⁺→e⁻ $\nu\mu$ ⁺ μ ⁺ decays. [BR(μ - ν e⁺e⁺)<1.9×10⁻⁸: Geneva-Saclay, 1976]
- ❖ Searches for $\Delta S = \Delta Q$ violating decays $K^+ \rightarrow \pi^+ \pi^+ e^- v$ and $K^+ \rightarrow \pi^+ \pi^+ \mu^- v$. [BR($\pi^+ \pi^+ e^- v$)<1.3×10⁻⁸; BR($\pi^+ \pi^+ \mu^- v$)<3.0×10⁻⁶: ~50 years old]

Approximate statistical reach with the 2016-17 data sample:

```
❖ Di-muon trigger stream: \sim 2 \times 10^{12} \text{ K}^+ \text{ decays}; SES\sim 10^{-11}; 
❖ Decays to \mu e and ee pairs: \sim 5 \times 10^{11} \text{ K}^+ \text{ decays}; SES\sim 10^{-10}; 
❖ Other 3-track decays: \sim 5 \times 10^{10} \text{ K}^+ \text{ decays}; SES\sim 10^{-9}.
```

NA62 is competitive for most of these decay modes

HNL Production @ NA62

- Search for HNL produced in $K^+ \rightarrow e^+\nu_h$ and $K^+ \rightarrow \mu^+\nu_h$ decays
- NA62 2015 data (minimum bias @ 1% intensity, 5days)
- Number of K⁺ decays in FV: $N_K = (3.01\pm0.11) \times 10^8$ in positron case; $(1.06\pm0.12) \times 10^8$ in muon case.
- HNL production: search for peaks in squared missing mass spectra

HNL Global Limits

$$\left|U_{l4}
ight|^2 = rac{\mathcal{B}(K^+
ightarrow l^+ N)}{\mathcal{B}(K^+
ightarrow l^+
u_l) \;
ho_l(m_N)}$$

NA62 2007 Data Analysis:

• Extends the mass range for upper limits on $|\mathbf{U}_{\mathbf{u}\mathbf{4}}|^2$

[Phys. Lett. B772 (2017) 712]

NEW NA62 2015 Data Analysis:

Reached 10⁻⁶-10⁻⁷ limits for |U₁₄|² in HNL (170,448) MeV/c² mass range [Phys. Lett. B778 (2018) 137]

Full 2016-2018 data set analysis will esplore $|U_{14}|^2 \lesssim 10^{-8}$ range

- Search for A' produced via: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, A' \rightarrow invisible
- Sensitivity to DP for $m(A') < m(\pi^0)$
- NA62 2016 data (40% nominal beam intensity)
- NA62 main trigger for $K^+ \rightarrow \pi^+ \nu \nu$
- Search for peaks in $M^2_{\text{miss}}(K^+ \rightarrow \pi^+ \pi^0) = (P_K P_\pi P_\gamma)^2$

Signature:

• 1 photon + missing energy

Selection:

- π^+ as in $K^+ \rightarrow \pi^+ \nu \nu$
- 1 γ in LKr
- Missing momentum in LKr
- Extra γ veto

Dark Photon Searches @ NA62

- Search for A' produced via: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, A' \rightarrow invisible
- DP mass range: $50 \text{ MeV/c}^2 < \text{m(A')} < 90 \text{ MeV/c}^2$

Preliminary results using ~1.5 x 10¹⁰ K⁺ decays [~5% of 2016 NA62 data]

Expect improvement over the world data

Improvement on BR(π^{o}) over current limit of 2.7×10⁻⁷ also possible

Hidden Sector searches at NA62 in "Dump" mode

NA62 "Dump" Operation Mode

- Be target can be moved away
- Proton beam impinges on TAX1-2 (PoT)
- TAX1-2 can act as a beam "dump": 3.2 m of Cu + Fe, $\sim 22\lambda_I$
- Production of HNL, Dark Photon(DP), Dark Scalar(DS) and ALP from charm, beauty and γs produced in interaction of protons with the dump
- 10¹⁸ PoT/nominal year: 10¹² PoT/sec on spill, 100 days/year

NA62 kaon or proton "dump" modes are easily switchable in current setup

NA62 Data taking in 2021-2023 (Run 3)

A rich field to be explored with minimal upgrades to the present setup:

- 1. run for refining K_{myy} measurement
- 2. present K⁺ setup: unprecedented LFV/LNV sensitivities from K⁺/ π^0
- 3. run in "beam-dump" mode with NP searches for MeV-GeV mass hiddensector candidates: HNL, DP, DS, ALP, etc.

Run 3 goal: integrate at least 10¹⁸ PoT in "dump" operation mode(*)

NA62 @ Physics Beyond Colliders

(*) "dump" data taking distributed in 3 years, without disruption for the kaon mode operation

NA62 Sensitivity

NA62 sensitivity with ~10¹⁸ 400-GeV **PoT** running in "dump" mode

- Fully reconstructed 2-track final states
- Assume zero-background
- Evaluate expected 90% C.L. exclusion plots

The NA62 experiment (aka the CERN kaon factory) has **a vast and unique physics program for the search of NP**, complementary to what can be achieved at colliders.

First results on PNN, HNL and DP searches have been obtained on subsample of data collected during NA62 Run1 (2016-2018)

Running after LS2 (2021-2023) will allow to **fully exploit the NA62 physics reach** with the current detector and setup

There is a window of opportunity to **run NA62 in beam-dump mode to search for hidden sector mediators** from charm and beauty decays and pave the way for the next generation experiments (SHiP....);

New physics in kaon and beam-dump experiments

3rd December 2018, University of Birmingham

Spares

Angela Romano, University of Birmingham

$K^+\rightarrow \pi^+A'$, $A'\rightarrow$ invisible

NA62 K⁺ $\rightarrow \pi$ ⁺vv analysis interpreted as K⁺ $\rightarrow \pi$ ⁺X search, X is invisible

BNL-E949 K⁺ $\rightarrow \pi$ ⁺vv analysis: [PRD79 (2009) 092004] search for K⁺ $\rightarrow \pi$ ⁺X, (X is invisible)

BNL-E949 BR($\pi^0 \rightarrow \text{invisible}$) < 2.7x10⁻⁷ at 90% CL

[PRD72 (2005) 091102]

Angela Romano, IOP 2018

______1

NA62: expect an order of magnitude improvement

m(A') [MeV/c²] Non-trivial limits on DP phase space

including the $(g-2)\mu$ favoured band, assuming invisible DP decays.

22

Search for $\pi^0 \rightarrow$ invisible, NA62 sensitive at 10⁻⁸ or better...

Photon Rejection (2015 Data):

- ► Measured π^0 → γγ decay suppression = 1.2×10⁻⁷ in $K_{\pi\nu\nu}$ signal region
- > Goal: O(108) π^{o} rejection for K⁺-> $\pi^{+}\pi^{0}$ bkg
- > $E(\pi^0) > 40 \text{GeV for } P_{\pi}^+ < 35 \text{ GeV/c}$

Kinematics (2015 Data):

- \triangleright Measured bkg rejection: 6×10^{-4} for K⁺ $\rightarrow\pi^+\pi^0$
- \triangleright Goal: O(10⁴) for K⁺→π⁺π⁰ and K⁺→μ⁺ν

Search for resonances in $K^+ \rightarrow \pi^+ X$ ($X \rightarrow \mu^+ \mu^-$) decay

Light inflaton model:

- Inflaton X is a new scalar
- 3 parameters in the model, 2 free
- Inflaton production: B and K decays are governed by the same parameters
- Inflaton decays to SM particles

Experimental limits:

Region accessible in $K^+ \rightarrow \pi^+ X_{\iota} X \rightarrow \mu + \mu - :$ $\theta^2 \sim 4*10^{-7} \text{ (m} \sim 270-300 \text{ MeV)}$

Low energy SUSY models:

- ■Sgoldstinos P (pseudoscalar) and S (scalar) are superpartners of goldstino
- •No strict limits on the mass and lifetime
- driven by the same coupling constants
- •P and S can be light and decay to SM particles

Experimental limits:

 $\Sigma^+ \to pP^0, P^0 \to \mu^+\mu^-$ Hyperon decays:

HyperCP, LHCb

[arXiv:hep-ex/0501014] [arXiv:1712.08606]

o K_L decays: $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^$ kTeV

∘ K[±] decays:

 $K^+ \rightarrow \pi^+ S$, $S \rightarrow \mu^+ \mu^-$

NA48/2 [arXiv:1612.04723]

NA62 PROSPECTS:

- $O(10^{12})$ K decays in 2016-2017
- Displaced vertex approach
- Acceptance up to O(10%)
- Almost background free for long-lived particles

HNL Searches in vMSM

PHYSICAL REVIEW D93, 033005(2016)

 10^{1}

99% C.L

 10^{2}

25

m_H[GeV]

 10^{3}

- **vMSM** = **SM** + 3 right-handed HNLs [Asaka et al., PLB 631 (2005) 151]
- Masses: $m_1 \sim 10$ keV; $m_{2,3} \sim 1$ GeV
- HNLs observable via **production** and **decay**
- Production searches are model-independent
- NA62 searches for HNL produced in $K^+ \rightarrow \mu^+ \nu_h$ and $K^+ \rightarrow e^+ \nu_h$

Global limits on $|U_{\mu H}|^2$ as a function of HNL mass Most stringent limits set by K decay 10^{-3} measurements 10 HNL production, kinematic factor $(\Gamma(\mathsf{K}^+ \rightarrow \mathsf{I}^+ \mathsf{v}_h)/|\mathsf{U}_{\mathsf{IH}}|^2) / \Gamma(\mathsf{K}^+ \rightarrow \mathsf{I}^+ \mathsf{v})$ $K \rightarrow \mu \nu$ R. Shrock $K^+ \rightarrow \mu^+ \nu_h$ PLB96(1980)159 $K^+ \rightarrow e^+ \nu_h$ 10^{-2} 10^{-4} 10^{-3} 10^{0} 10^{-1} m_4 [GeV] $K^+ \rightarrow e^+ \nu_h$ helicity suppressed (~10⁻⁵) for $m(v_h) \rightarrow 0$ Lifting of the suppression by the HNL PLB698 (2011) 105 (for $m(v_h) \sim 0.1 \text{GeV}$) means there could be a similar number of $K^+ \rightarrow e^+ \nu_h$ events as $K^+ \rightarrow \mu^+ \nu_h$

.3 0.35 0.4 0.45 0. Heavy Neutrino Mass (GeV/c²) Angela Romano, IOP 2018, 03-12-2018

HNL Production @ NA62

- Rolke-Lopez method used to find upper limits on number of signal events
- Heavy neutrino mass step: 1 MeV/c²
- Search window size for each mass hypothesis: $\pm 1.5\sigma_{m}$
- Background estimate: polynomial fits to mass spectra outside signal window

No HNL signal observed

NA62 (2015): $K^+ \rightarrow e^+ \nu_h$ search

Limits on BR(K⁺ \rightarrow e⁺ v_e) ~ 10⁻⁷, limits on $|U_{e4}|^2$ ~ 10⁻⁷ for M_H > 170MeV/c²

* NA62 👌

Hidden Sector Motivations

If Dark Matter (DM) is a thermal relic from hot early universe, can hunt for it in particle-physics: search for non-gravitational interactions DM-SM

- A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions;
- Many possible dynamics: vector (A' dark photon), neutrino (HNL), axial (ALP a), scalar ...

Various experimental hints for hidden sector at MeV-GeV, e.g. a_{μ} 3.5- σ discrepancy:

Feeble interaction: ultra-suppressed production rate, **very long-lived states.** E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$ - 10^{-2} s, decay length ~ 10 -10000 Km at SPS energies, suppression at production 10^{-7} - 10^{-10}

Hidden Sector at NA62

Feeble interactions: ultra-suppressed production rate, very long-lived states

Why searching for hidden sector mediators at NA62?

- High-intensity, high-energy proton beam
- To date the world best line to produce high intensity fluxes of beauty and charm hadrons and photons through the interactions of protons on a high-Z target is a 400 GeV/c proton beam line extracted from the CERN SPS
 - Long fiducial decay volume
- The decays to SM particles can optimally be detected using an experiment with decay volume tens of meters long followed by a spectrometer with particle identification capabilities

The NA62 detector perfectly fits these requirements

Hidden Sector Particle at NA62

K, B, Bs, D, Ds \rightarrow lepton HNL K, B, Bs, D, Ds \rightarrow semi-leptonic modes

At SPS energies:

$$\sigma$$
 (pp \rightarrow s sbar X) ~ 0.15

$$\sigma$$
 (pp \rightarrow c cbar X) $\sim 2 \cdot 10^{-3}$

$$\sigma$$
 (pp \rightarrow b bbar X) $\sim 1.6 \ 10^{-7}$

Heavy neutrino couplings enter both in production and in decay ($\sim U^4$ process)

Hidden Sector Particle at NA6

Dark photons

At SPS energies:

$$\sigma$$
 (pp \rightarrow s sbar X) ~ 0.15

$$\sigma$$
 (pp \rightarrow c cbar X) $\sim 2 \cdot 10^{-3}$

$$\sigma$$
 (pp \rightarrow b bbar X) $\sim 1.6 \ 10^{-7}$

Photon produced in light meson resonances, bremsstrahlung, and QCD processes.

Search for massive particle mixing with the photon and decaying to visible final states (e^+e^- , $\mu^+\mu^-$, etc.)

Hidden Sector Particle at NA62

Dark scalars: B \rightarrow K S, K \rightarrow π S

K, D, B photons, neutrons, protons, π muons from K/π decays and light resonances, neutrinos, etc..

At SPS energies:

$$\sigma$$
 (pp \rightarrow s sbar X) ~ 0.15

$$\sigma$$
 (pp \rightarrow c cbar X) $\sim 2 \cdot 10^{-3}$

$$\sigma$$
 (pp \rightarrow b bbar X) $\sim 1.6 \ 10^{-7}$

$$\Gamma(K \to \pi \phi) \sim (m_t^2 | V_{ts}^* V_{td} |)^2 \propto m_t^4 \lambda^5$$

$$\Gamma(D \to \pi \phi) \sim (m_b^2 | V_{cb}^* V_{ub} |)^2 \propto m_b^4 \lambda^5$$

$$\Gamma(B \to K \phi) \sim (m_t^2 | V_{ts}^* V_{tb} |)^2 \propto m_t^4 \lambda^2$$

"Dump" mode

All beam-induced backgrounds are stopped but muons and neutrinos

A setup with long decay volume allows for probing low values of couplings (as the lifetime of hidden-sector particles $\sim 1/\text{coupling}^2$)

Heavy Neutral Lepton

NA62 sensitivity with ~10¹⁸ 400-GeV PoT running in "dump" mode

- Fully reconstructed 2-track final states
- All HNL decays, close and open channels
- Include trigger/acceptance/selection efficiency
- Assume zero-background
- Evaluate expected 90% C.L. exclusion plots

Dark Photon

NA62 sensitivity with ~10¹⁸ 400-GeV PoT running in "dump" mode

- Fully reconstructed 2-track final states
- Search for displaced, di-lepton decays of DP (A' \rightarrow ee, $\mu\mu$)
- Include trigger/acceptance/selection efficiency
- Assume zero-background
- Evaluate expected 90% C.L. exclusion plots

Projections consider only A' production in Be target

Sensitivity expected to be higher when including:

- Direct QCD production of A'
- A' production in the TAX

Axion-like Particle (ALP)

NA62 sensitivity with 1.3 x 10^{16} (3.9 x 10^{17}) 400-GeV PoT corresponding to 1 day (1 month) of runs in "dump" mode

- study ALP production via Primakoff effect [JHEP 1602 (2016) 018] at target
- search for ALP \rightarrow yy in NA62 fiducial volume, account for geometrical acceptance
- Assume zero-background, evaluate expected 90% C.L. exclusion contours

Axion-like particle (ALP) production in NA62

TAX1-2: movable copper + iron made collimators of ~22λ₁ total thickness

~ 80m before fiducial volume

- K⁺ from Be target, large fraction of SPS protons continuously 'dumped'
- long-lived, weakly-interacting particles produced along with nominal beam directly/decay
- possibility to dump entire beam by closing TAX
 (~ 10¹² p/sec) and removing Be target
 - Copper TAX \rightarrow coherent Z^2 enhancement with charge
- collected ~ 2.5 x 10¹⁵ PoT in beam "dump"
 mode at the end of 2016 run

ALP production from TAX in NA6

Pseudo-scalar ALP (a) created by photon fusion (Primakoff effect);

ALP lifetime dependence on its mass and coupling with photon: $t \sim 1/(g_{av}^2 m_a^3)$

The projected limits fold as input:

- 1. the differential cross-section for production_
- 2. coincidence and acceptance in EM calo
- 3. probability to decay within the FV

Expected limits on the mass and coupling assuming (*)1 day/(**)1 month of data taking in "dump" mode

ALP Ongoing Analysis

m=40MeV, g=2x10

Challenging:

 photon is not tracked, know only E1, E2, d in Ecal and need to impose mass or decay point to discriminate;

• Mitigation:

only extend beyond existing limits at small I_d: decay in absorber:

$$\sim \exp(-I_{\rm abs}/I_d)$$
, $I_d = \gamma \beta \tau \sim \frac{E_a}{m} \frac{64\pi}{m^3 g^2}$

- yields the **ALPs** in reach **highly boosted** $E_a = E(\gamma 1) + E(\gamma 2)$
- their barycenter enclose a (computable) non-zero angle θ
- compare charged sample in side-band, **deduce expected background** in signal region optimization of signal efficiency for (g,m) in full MC on the way