New physics in kaon and beam-dump experiments 3rd December 2018, University of Birmingham # The NA62 physics programme at CERN Angela Romano, University of Birmingham ## NA62: a general purpose NA62 experiment High precision fixed-target Kaon experiment at CERN SPS Highest energy proton beam delivered for fixed-target exp in the world Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC) ### The NA62 Detector #### SPS proton beam on Be target: - 400 GeV/c, 3×10¹²/spill - ~10¹⁸ protons on target/year - $\sim 5 \times 10^{12} \,\mathrm{K}^+ \,\mathrm{decays/year}$ in FV [NA62 Detector Paper, 2017 JINST 12 P05025] Detectors for decay products - > Secondary un-separated hadron ($\pi^+/K^+/p$) beam - > **800MHz** beam rate @GTK (45MHz K⁺ component) - $ightharpoonup K^+$: 75GeV/c (±1%), divergence < 100 μ rad - > ~10% of K⁺ decays in ~60m Fiducial Volume (FV) ### The NA62 Detector #### SPS proton beam on Be target: - 400 GeV/c, 3×10¹²/spill - ~10¹⁸ protons on target/year - $\sim 5 \times 10^{12} \,\mathrm{K}^+ \,\mathrm{decays/year}$ in FV [NA62 Detector Paper, 2017 JINST 12 P05025] Detectors for decay products #### **Performances:** - Excellent time resolution **O(100 ps)** to match beam/daugther particle info - \rightarrow Kinematic rejection factors: ~10⁻⁴ for K⁺ $\rightarrow \pi^+\pi^0$, K $\rightarrow \mu^+\nu$ bkg channels - Particle ID: ~10⁻⁷ μ suppression for 15 < $p(\pi^+)$ < 35 GeV/c - \rightarrow Hermetic photon veto: ~10⁻⁸ rejection of $\pi^0 \rightarrow \gamma \gamma$ for E(π^0)>40GeV ### The NA62 Detector - ~10¹⁸ protons on target/year ~5×10¹² K⁺ decays/year in FV [NA62 Detector Paper, 2017 JINST 12 P05025] Detectors for decay products High-intensity setup, trigger system flexibility and detector performances make NA62 particularly suitable to search for NP effects from different scenarios # NA62 Physics Programme beyond K→πνν #### Standard Kaon Physics - ➤ Measurements of the BR of all the main K⁺ decay modes - $\triangleright \chi \text{PT: } K^+ \rightarrow \pi^+ \gamma \gamma, K^+ \rightarrow \pi^+ \pi^0 e^+ e^-, K^+ \rightarrow \pi^0 (^+) \pi^0 (^-) l^+ \nu$ - \triangleright Lepton Universality: $R_K = \Gamma(K^+ \rightarrow e^+ \nu_e)/(K^+ \rightarrow \mu^+ \nu_\mu)$ ### • Rare/forbidden K⁺ and π^0 decays at SES ~10⁻¹²: - \mathbf{K}^+ physics: $\mathbf{K}^+ \rightarrow \pi^+ \ell^+ \ell^-$, $\mathbf{K}^+ \rightarrow \pi^+ \gamma \ell^+ \ell^-$, $\mathbf{K}^+ \rightarrow \ell^+ \nu \gamma$, - LFV-LNV searches: $K^+ \rightarrow \pi^+ \mu^{\pm} e^{\mp}$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- l^+ l^+$, ... - π^0 physics: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^-$, $\pi^0 \rightarrow e^+ e^- e^+ e^-$, $\pi^0 \rightarrow \gamma \gamma \gamma (\gamma)$, ... #### Exotics searches - \triangleright Heavy Neutral Lepton (HNL) production from $K^+ \rightarrow l^+ \nu_h$ - \triangleright Dark Photon (A') $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, A' \rightarrow invisible Recent Results ## K⁺ →e⁺v: Lepton Universality 25% 2017 Data: $N_K = 3 \times 10^{11}$, world largest sample of $K^+ \rightarrow e^+ v \ 4 \times 10^5$ Study of lepton universality in K: $$R_K \equiv \Gamma(K^+ \to e^+ \nu) / \Gamma(K^+ \to \mu^+ \nu)$$ Theory (SM): $$R_K = (2.477 \pm 0.001) \times 10^{-5}$$ [Phys. Rev. Lett. 99 (2007) 231801] Experimental Status (2007 NA62): $$R_K = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5}$$ [Phys. Lett. B 719 (2013) 326] - NA62 Present: novel method to measure R_K using $\mu^+ \to e^+ \nu \bar{\nu}$ for normalization - No systematics uncertainties that limited the 2007 NA62 measurement Aim: R_K measurement at sub-percent level precision ## K⁺ → π⁺μ⁺μ⁻ 50% 2016 + 25% 2017 Data: $N_K = 6.3 \times 10^{11}$ - World-largest $K^+ \rightarrow \pi^+ \mu^+ \mu^-$: $\sim 4.6 \times 10^3$ events $(BR \sim 10^{-7})$ - Wxpected 10K; competitive measurement - Search for $K^+ \to \pi^- \mu^+ \mu^+$ is not limited by background: SES = 2×10^{-11} - Sensitivity to $K^+ \to \pi^+ S$, $S \to \mu^+ \mu^-$: SES $\sim 10^{-10}$ for lifetimes up to $\mathcal{O}(1 \text{ ns})$ ### K⁺ → π⁺e⁺e⁻ 50% 2016 + 25% 2017 Data: $N_K = 1.3 \times 10^{11}$ - Background free $\sim 1.1 \times 10^3$ events for $m_{ee} > 140$ MeV/c² ($BR \sim 3 \times 10^{-7}$) - First observation at $m_{ee} < 140 \text{ MeV/c}^2$ - Sensitivity to BR(K⁺ $\to \pi^+ X$)BR(X $\to e^+ e^-$), $10 < m_X < 100 \text{ MeV/c}^2 : \mathcal{O}(10^{-9})$ - Search for $K^+ \to \pi^- e^+ e^+$ is not limited by background: SES = 2×10^{-10} # Forbidden K⁺ decays at NA62 #### Goal: improve over most existing limits (mainly from BNL E865, E777). - ❖ Search for the LNV decay $K^+ \rightarrow \pi^- \mu^+ \mu^+$ [BR<8.6×10⁻¹¹, NA48/2@CERN] - ❖ Search for the LNV decay $K^+ \rightarrow \pi^- e^+ e^+$ [BR<6.4×10⁻¹⁰] - ❖ Searches for LNV/LFV decays K⁺→πμe, including π^0 →μe. [BR($\pi^-\mu^+e^+$)<5.0×10⁻¹⁰; BR($\pi^+\mu^-e^+$)<5.2×10⁻¹⁰; BR($\pi^+\mu^+e^-$)<1.3×10⁻¹¹] [BR(π^0 → $\mu^\pm e^\mp$)<3.6×10⁻¹⁰, kTeV@FNAL] - ❖ Searches for K⁺→ μ - ν e⁺e⁺ and K⁺→e⁻ $\nu\mu$ ⁺ μ ⁺ decays. [BR(μ - ν e⁺e⁺)<1.9×10⁻⁸: Geneva-Saclay, 1976] - ❖ Searches for $\Delta S = \Delta Q$ violating decays $K^+ \rightarrow \pi^+ \pi^+ e^- v$ and $K^+ \rightarrow \pi^+ \pi^+ \mu^- v$. [BR($\pi^+ \pi^+ e^- v$)<1.3×10⁻⁸; BR($\pi^+ \pi^+ \mu^- v$)<3.0×10⁻⁶: ~50 years old] #### Approximate statistical reach with the 2016-17 data sample: ``` ❖ Di-muon trigger stream: \sim 2 \times 10^{12} \text{ K}^+ \text{ decays}; SES\sim 10^{-11}; ❖ Decays to \mu e and ee pairs: \sim 5 \times 10^{11} \text{ K}^+ \text{ decays}; SES\sim 10^{-10}; ❖ Other 3-track decays: \sim 5 \times 10^{10} \text{ K}^+ \text{ decays}; SES\sim 10^{-9}. ``` NA62 is competitive for most of these decay modes ## **HNL Production @ NA62** - Search for HNL produced in $K^+ \rightarrow e^+\nu_h$ and $K^+ \rightarrow \mu^+\nu_h$ decays - NA62 2015 data (minimum bias @ 1% intensity, 5days) - Number of K⁺ decays in FV: $N_K = (3.01\pm0.11) \times 10^8$ in positron case; $(1.06\pm0.12) \times 10^8$ in muon case. - HNL production: search for peaks in squared missing mass spectra ### **HNL Global Limits** $$\left|U_{l4} ight|^2 = rac{\mathcal{B}(K^+ ightarrow l^+ N)}{\mathcal{B}(K^+ ightarrow l^+ u_l) \; ho_l(m_N)}$$ #### NA62 2007 Data Analysis: • Extends the mass range for upper limits on $|\mathbf{U}_{\mathbf{u}\mathbf{4}}|^2$ [Phys. Lett. B772 (2017) 712] ### NEW NA62 2015 Data Analysis: Reached 10⁻⁶-10⁻⁷ limits for |U₁₄|² in HNL (170,448) MeV/c² mass range [Phys. Lett. B778 (2018) 137] Full 2016-2018 data set analysis will esplore $|U_{14}|^2 \lesssim 10^{-8}$ range - Search for A' produced via: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, A' \rightarrow invisible - Sensitivity to DP for $m(A') < m(\pi^0)$ - NA62 2016 data (40% nominal beam intensity) - NA62 main trigger for $K^+ \rightarrow \pi^+ \nu \nu$ - Search for peaks in $M^2_{\text{miss}}(K^+ \rightarrow \pi^+ \pi^0) = (P_K P_\pi P_\gamma)^2$ #### **Signature:** • 1 photon + missing energy #### **Selection:** - π^+ as in $K^+ \rightarrow \pi^+ \nu \nu$ - 1 γ in LKr - Missing momentum in LKr - Extra γ veto # Dark Photon Searches @ NA62 - Search for A' produced via: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow \gamma A'$, A' \rightarrow invisible - DP mass range: $50 \text{ MeV/c}^2 < \text{m(A')} < 90 \text{ MeV/c}^2$ Preliminary results using ~1.5 x 10¹⁰ K⁺ decays [~5% of 2016 NA62 data] **Expect improvement over the world data** **Improvement on BR**(π^{o}) over current limit of 2.7×10⁻⁷ also possible # Hidden Sector searches at NA62 in "Dump" mode ## NA62 "Dump" Operation Mode - Be target can be moved away - Proton beam impinges on TAX1-2 (PoT) - TAX1-2 can act as a beam "dump": 3.2 m of Cu + Fe, $\sim 22\lambda_I$ - Production of HNL, Dark Photon(DP), Dark Scalar(DS) and ALP from charm, beauty and γs produced in interaction of protons with the dump - 10¹⁸ PoT/nominal year: 10¹² PoT/sec on spill, 100 days/year NA62 kaon or proton "dump" modes are easily switchable in current setup ### NA62 Data taking in 2021-2023 (Run 3) A rich field to be explored with minimal upgrades to the present setup: - 1. run for refining K_{myy} measurement - 2. present K⁺ setup: unprecedented LFV/LNV sensitivities from K⁺/ π^0 - 3. run in "beam-dump" mode with NP searches for MeV-GeV mass hiddensector candidates: HNL, DP, DS, ALP, etc. Run 3 goal: integrate at least 10¹⁸ PoT in "dump" operation mode(*) NA62 @ Physics Beyond Colliders (*) "dump" data taking distributed in 3 years, without disruption for the kaon mode operation ### **NA62 Sensitivity** NA62 sensitivity with ~10¹⁸ 400-GeV **PoT** running in "dump" mode - Fully reconstructed 2-track final states - Assume zero-background - Evaluate expected 90% C.L. exclusion plots The NA62 experiment (aka the CERN kaon factory) has **a vast and unique physics program for the search of NP**, complementary to what can be achieved at colliders. First results on PNN, HNL and DP searches have been obtained on subsample of data collected during NA62 Run1 (2016-2018) Running after LS2 (2021-2023) will allow to **fully exploit the NA62 physics reach** with the current detector and setup There is a window of opportunity to **run NA62 in beam-dump mode to search for hidden sector mediators** from charm and beauty decays and pave the way for the next generation experiments (SHiP....); # New physics in kaon and beam-dump experiments 3rd December 2018, University of Birmingham ### **Spares** Angela Romano, University of Birmingham ## $K^+\rightarrow \pi^+A'$, $A'\rightarrow$ invisible NA62 K⁺ $\rightarrow \pi$ ⁺vv analysis interpreted as K⁺ $\rightarrow \pi$ ⁺X search, X is invisible **BNL-E949** K⁺ $\rightarrow \pi$ ⁺vv analysis: [PRD79 (2009) 092004] search for K⁺ $\rightarrow \pi$ ⁺X, (X is invisible) **BNL-E949** BR($\pi^0 \rightarrow \text{invisible}$) < 2.7x10⁻⁷ at 90% CL [PRD72 (2005) 091102] Angela Romano, IOP 2018 ______1 NA62: expect an order of magnitude improvement m(A') [MeV/c²] Non-trivial limits on DP phase space including the $(g-2)\mu$ favoured band, assuming invisible DP decays. 22 Search for $\pi^0 \rightarrow$ invisible, NA62 sensitive at 10⁻⁸ or better... Photon Rejection (2015 Data): - ► Measured π^0 → γγ decay suppression = 1.2×10⁻⁷ in $K_{\pi\nu\nu}$ signal region - > Goal: O(108) π^{o} rejection for K⁺-> $\pi^{+}\pi^{0}$ bkg - > $E(\pi^0) > 40 \text{GeV for } P_{\pi}^+ < 35 \text{ GeV/c}$ ### Kinematics (2015 Data): - \triangleright Measured bkg rejection: 6×10^{-4} for K⁺ $\rightarrow\pi^+\pi^0$ - \triangleright Goal: O(10⁴) for K⁺→π⁺π⁰ and K⁺→μ⁺ν # Search for resonances in $K^+ \rightarrow \pi^+ X$ ($X \rightarrow \mu^+ \mu^-$) decay #### Light inflaton model: - Inflaton X is a new scalar - 3 parameters in the model, 2 free - Inflaton production: B and K decays are governed by the same parameters - Inflaton decays to SM particles #### Experimental limits: Region accessible in $K^+ \rightarrow \pi^+ X_{\iota} X \rightarrow \mu + \mu - :$ $\theta^2 \sim 4*10^{-7} \text{ (m} \sim 270-300 \text{ MeV)}$ #### Low energy SUSY models: - ■Sgoldstinos P (pseudoscalar) and S (scalar) are superpartners of goldstino - •No strict limits on the mass and lifetime - driven by the same coupling constants - •P and S can be light and decay to SM particles #### Experimental limits: $\Sigma^+ \to pP^0, P^0 \to \mu^+\mu^-$ Hyperon decays: HyperCP, LHCb [arXiv:hep-ex/0501014] [arXiv:1712.08606] o K_L decays: $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^$ kTeV ∘ K[±] decays: $K^+ \rightarrow \pi^+ S$, $S \rightarrow \mu^+ \mu^-$ NA48/2 [arXiv:1612.04723] #### **NA62 PROSPECTS:** - $O(10^{12})$ K decays in 2016-2017 - Displaced vertex approach - Acceptance up to O(10%) - Almost background free for long-lived particles ### HNL Searches in vMSM PHYSICAL REVIEW D93, 033005(2016) 10^{1} 99% C.L 10^{2} 25 m_H[GeV] 10^{3} - **vMSM** = **SM** + 3 right-handed HNLs [Asaka et al., PLB 631 (2005) 151] - Masses: $m_1 \sim 10$ keV; $m_{2,3} \sim 1$ GeV - HNLs observable via **production** and **decay** - Production searches are model-independent - NA62 searches for HNL produced in $K^+ \rightarrow \mu^+ \nu_h$ and $K^+ \rightarrow e^+ \nu_h$ Global limits on $|U_{\mu H}|^2$ as a function of HNL mass Most stringent limits set by K decay 10^{-3} measurements 10 HNL production, kinematic factor $(\Gamma(\mathsf{K}^+ \rightarrow \mathsf{I}^+ \mathsf{v}_h)/|\mathsf{U}_{\mathsf{IH}}|^2) / \Gamma(\mathsf{K}^+ \rightarrow \mathsf{I}^+ \mathsf{v})$ $K \rightarrow \mu \nu$ R. Shrock $K^+ \rightarrow \mu^+ \nu_h$ PLB96(1980)159 $K^+ \rightarrow e^+ \nu_h$ 10^{-2} 10^{-4} 10^{-3} 10^{0} 10^{-1} m_4 [GeV] $K^+ \rightarrow e^+ \nu_h$ helicity suppressed (~10⁻⁵) for $m(v_h) \rightarrow 0$ Lifting of the suppression by the HNL PLB698 (2011) 105 (for $m(v_h) \sim 0.1 \text{GeV}$) means there could be a similar number of $K^+ \rightarrow e^+ \nu_h$ events as $K^+ \rightarrow \mu^+ \nu_h$.3 0.35 0.4 0.45 0. Heavy Neutrino Mass (GeV/c²) Angela Romano, IOP 2018, 03-12-2018 ### **HNL Production @ NA62** - Rolke-Lopez method used to find upper limits on number of signal events - Heavy neutrino mass step: 1 MeV/c² - Search window size for each mass hypothesis: $\pm 1.5\sigma_{m}$ - Background estimate: polynomial fits to mass spectra outside signal window No HNL signal observed **NA62 (2015)**: $K^+ \rightarrow e^+ \nu_h$ search Limits on BR(K⁺ \rightarrow e⁺ v_e) ~ 10⁻⁷, limits on $|U_{e4}|^2$ ~ 10⁻⁷ for M_H > 170MeV/c² ### * NA62 👌 # Hidden Sector Motivations If Dark Matter (DM) is a thermal relic from hot early universe, can hunt for it in particle-physics: search for non-gravitational interactions DM-SM - A mediator of a hidden sector might exist, inducing DM-SM field (feeble) interactions; - Many possible dynamics: vector (A' dark photon), neutrino (HNL), axial (ALP a), scalar ... **Various experimental hints** for hidden sector at MeV-GeV, e.g. a_{μ} 3.5- σ discrepancy: **Feeble interaction:** ultra-suppressed production rate, **very long-lived states.** E.g.: 1-GeV mass HNL, $\tau \sim 10^{-5}$ - 10^{-2} s, decay length ~ 10 -10000 Km at SPS energies, suppression at production 10^{-7} - 10^{-10} ### **Hidden Sector at NA62** Feeble interactions: ultra-suppressed production rate, very long-lived states Why searching for hidden sector mediators at NA62? - High-intensity, high-energy proton beam - To date the world best line to produce high intensity fluxes of beauty and charm hadrons and photons through the interactions of protons on a high-Z target is a 400 GeV/c proton beam line extracted from the CERN SPS - Long fiducial decay volume - The decays to SM particles can optimally be detected using an experiment with decay volume tens of meters long followed by a spectrometer with particle identification capabilities The NA62 detector perfectly fits these requirements # Hidden Sector Particle at NA62 K, B, Bs, D, Ds \rightarrow lepton HNL K, B, Bs, D, Ds \rightarrow semi-leptonic modes At SPS energies: $$\sigma$$ (pp \rightarrow s sbar X) ~ 0.15 $$\sigma$$ (pp \rightarrow c cbar X) $\sim 2 \cdot 10^{-3}$ $$\sigma$$ (pp \rightarrow b bbar X) $\sim 1.6 \ 10^{-7}$ Heavy neutrino couplings enter both in production and in decay ($\sim U^4$ process) # Hidden Sector Particle at NA6 ### **Dark photons** At SPS energies: $$\sigma$$ (pp \rightarrow s sbar X) ~ 0.15 $$\sigma$$ (pp \rightarrow c cbar X) $\sim 2 \cdot 10^{-3}$ $$\sigma$$ (pp \rightarrow b bbar X) $\sim 1.6 \ 10^{-7}$ Photon produced in light meson resonances, bremsstrahlung, and QCD processes. Search for massive particle mixing with the photon and decaying to visible final states (e^+e^- , $\mu^+\mu^-$, etc.) # Hidden Sector Particle at NA62 ### Dark scalars: B \rightarrow K S, K \rightarrow π S K, D, B photons, neutrons, protons, π muons from K/π decays and light resonances, neutrinos, etc.. At SPS energies: $$\sigma$$ (pp \rightarrow s sbar X) ~ 0.15 $$\sigma$$ (pp \rightarrow c cbar X) $\sim 2 \cdot 10^{-3}$ $$\sigma$$ (pp \rightarrow b bbar X) $\sim 1.6 \ 10^{-7}$ $$\Gamma(K \to \pi \phi) \sim (m_t^2 | V_{ts}^* V_{td} |)^2 \propto m_t^4 \lambda^5$$ $$\Gamma(D \to \pi \phi) \sim (m_b^2 | V_{cb}^* V_{ub} |)^2 \propto m_b^4 \lambda^5$$ $$\Gamma(B \to K \phi) \sim (m_t^2 | V_{ts}^* V_{tb} |)^2 \propto m_t^4 \lambda^2$$ ### "Dump" mode All beam-induced backgrounds are stopped but muons and neutrinos A setup with long decay volume allows for probing low values of couplings (as the lifetime of hidden-sector particles $\sim 1/\text{coupling}^2$) ## **Heavy Neutral Lepton** NA62 sensitivity with ~10¹⁸ 400-GeV PoT running in "dump" mode - Fully reconstructed 2-track final states - All HNL decays, close and open channels - Include trigger/acceptance/selection efficiency - Assume zero-background - Evaluate expected 90% C.L. exclusion plots ### **Dark Photon** NA62 sensitivity with ~10¹⁸ 400-GeV PoT running in "dump" mode - Fully reconstructed 2-track final states - Search for displaced, di-lepton decays of DP (A' \rightarrow ee, $\mu\mu$) - Include trigger/acceptance/selection efficiency - Assume zero-background - Evaluate expected 90% C.L. exclusion plots Projections consider only A' production in Be target Sensitivity expected to be higher when including: - Direct QCD production of A' - A' production in the TAX # **Axion-like Particle (ALP)** NA62 sensitivity with 1.3 x 10^{16} (3.9 x 10^{17}) 400-GeV PoT corresponding to 1 day (1 month) of runs in "dump" mode - study ALP production via Primakoff effect [JHEP 1602 (2016) 018] at target - search for ALP \rightarrow yy in NA62 fiducial volume, account for geometrical acceptance - Assume zero-background, evaluate expected 90% C.L. exclusion contours # Axion-like particle (ALP) production in NA62 TAX1-2: movable copper + iron made collimators of ~22λ₁ total thickness ~ 80m before fiducial volume - K⁺ from Be target, large fraction of SPS protons continuously 'dumped' - long-lived, weakly-interacting particles produced along with nominal beam directly/decay - possibility to dump entire beam by closing TAX (~ 10¹² p/sec) and removing Be target - Copper TAX \rightarrow coherent Z^2 enhancement with charge - collected ~ 2.5 x 10¹⁵ PoT in beam "dump" mode at the end of 2016 run ALP production from TAX in NA6 Pseudo-scalar ALP (a) created by photon fusion (Primakoff effect); ALP lifetime dependence on its mass and coupling with photon: $t \sim 1/(g_{av}^2 m_a^3)$ The projected limits fold as input: - 1. the differential cross-section for production_ - 2. coincidence and acceptance in EM calo - 3. probability to decay within the FV Expected limits on the mass and coupling assuming (*)1 day/(**)1 month of data taking in "dump" mode ### **ALP Ongoing Analysis** m=40MeV, g=2x10 #### Challenging: photon is not tracked, know only E1, E2, d in Ecal and need to impose mass or decay point to discriminate; #### • Mitigation: only extend beyond existing limits at small I_d: decay in absorber: $$\sim \exp(-I_{\rm abs}/I_d)$$, $I_d = \gamma \beta \tau \sim \frac{E_a}{m} \frac{64\pi}{m^3 g^2}$ - yields the **ALPs** in reach **highly boosted** $E_a = E(\gamma 1) + E(\gamma 2)$ - their barycenter enclose a (computable) non-zero angle θ - compare charged sample in side-band, **deduce expected background** in signal region optimization of signal efficiency for (g,m) in full MC on the way