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Introduction

Kaons are ideally suited for Lattice QCD

� Mesons: simpler and numerically cleaner than baryons

� Strange-light system: not too many different scales (compared eg. to charm
and bottom )

� Can use the same discretisations for everything:
light, strange, valence and sea quarks

What’s new ?
� Can now reach “physical” dynamical quark masses with various discretisations

(Including Chiral fermions !)

� Inclusion of EM corrections in progress

Different lattice collaborations use Nf = (2), 2 + 1, 2 + 1 + 1 dynamical flavours
with different discretisations



Introduction

Kaons are ideally suited for Lattice QCD

� Mesons: simpler and numerically cleaner than baryons

� Strange-light system: not too many different scales (compared eg. to charm
and bottom )

� Can use the same discretisations for everything:
light, strange, valence and sea quarks

What’s new ?
� Can now reach “physical” dynamical quark masses with various discretisations

(Including Chiral fermions !)

� Inclusion of EM corrections in progress

Different lattice collaborations use Nf = (2), 2 + 1, 2 + 1 + 1 dynamical flavours
with different discretisations



Introduction

Kaons are ideally suited for Lattice QCD

� Mesons: simpler and numerically cleaner than baryons

� Strange-light system: not too many different scales (compared eg. to charm
and bottom )

� Can use the same discretisations for everything:
light, strange, valence and sea quarks

What’s new ?
� Can now reach “physical” dynamical quark masses with various discretisations

(Including Chiral fermions !)

� Inclusion of EM corrections in progress

Different lattice collaborations use Nf = (2), 2 + 1, 2 + 1 + 1 dynamical flavours
with different discretisations



Outline

� Kl3 and Vus

� Rare kaon decay K → πνν̄

� K → ππ decay

� Kaon Mixing with and beyond the Standard Model

� Other perspective



Kl3



Kl3 semileptonic form factor

Diagram from
[Aida X. El-Khadra @ Lattice2018]

Obtain |Vus f+(0)| from the experimental rate

ΓK→πlν = C 2
K

G 2
Fm5

K

192π2
I SEW

[
1 + 2∆SU(2) + 2∆EM

]
|Vus f+(0)|2

I is the phase space integral

∆SU(2) is the ispospin breaking correction

SEW is the short distance electroweak correction

∆EM is the long distance electromagnetic correction

and f+(0) is the form factor we compute on the lattice
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Kl3 semileptonic form factor

Obtain |Vus f+(0)| from the experimental rate

ΓK→πlν = C 2
K

G 2
Fm5

K

192π2
I SEW

[
1 + 2∆SU(2) + 2∆EM

]
|Vus f+(0)|2

⇒ determine f+(0) from the lattice to constraint Vus
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Kl3 semileptonic form factor II.

Talk from [Aida X. El-Khadra @ Lattice2018]

Preliminary results from Fermilab-MILC
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Kl3 semileptonic form factor

� Example of well-known quantity on the lattice

� Computed by many collaborations

� Allows for precision phenomenology

� All the effects/systematic erros have to be well under control

� Preliminary results from Fermilab-MILC find

∆u = |Vud |2 + |Vus |2 + |Vub|2 − 1

= −0.00151(38)f+(0)(35)fK/fπ (36)exp(27)EM
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Rare Kaon decay



Rare kaon decay

Relevant for NA62

� K → πνν̄ or K → πl+l−

� FCNF, highly suppressed in the SM (Br ∼ 10−10), sensitivity to New-Physics

� K → πνν̄ is dominated by short-distance top-quark contribution

� But long-distance contribution from the charm is estimated to be of the same
order as the SM uncertainty (6− 8%)
[Isidori, Mescia, Smith ’05, Buras, Buttazzo, Girrbach-Noe ’15]

� Lattice exploratory studies of these long-distance contributions
[Christ, Feng, Portelli, Sachrajda ’16, Bai, Christ, Feng, Lawson, Portelli, Sachrajda ’17 ]

Nicolas Garron (University of Liverpool) Kaons on the lattice 4 / 32



Rare kaon decay

From [Xu Feng @Lattice 2017]

� Second order Weak interaction process

� Insertion of 2 Hamiltonian: ∆S = 1 and ∆S = 0

� Non-standard computation, requires new techniques to be developed

� Proof of concept and feasibility but no physical result yet
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K → ππ and CP violation



Background: Kaon decays and CP violation

� First discovery of CP violation was made in kaon system in 1964 (Christenson,
Cronin, Fitch and Turlay)

� Noble prize in 1980 (Cronin and Fitch)

� Direct CP violation discovered in kaon decays at CERN and Fermilab

[NAxx, KTeV ’90-99] ... (Long story, controversies, drama, etc )

� Finally, very nice measurements, numbers from NA48 and KTeV:
Indirect |ε| = (2.228± 0.011)× 10−3

Direct Re
(
ε′

ε

)
= (1.66± 0.23)× 10−3

= (1.65± 0.26)× 10−3 [PDG2018]
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Background: Kaon decays and CP violation

� Although very small effects, both direct and indirect CP violation are well
established (experimentally) in K → ππ

� Expect sensitivity to New Physics

� Nice framework to test the Standard Model and constrain BSM theories

What about the theoretical side ?
� ε and neutral kaon mixing “under control”

SM and BSM contributions know with decent precision

� ε′ and K → ππ: first “complete” computation only in 2015

Uncertainty on ε′/ε: Experiment ∼ 2× 10−4 (14%) vs Theory (5− 7)× 10−4
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Background: Kaon decays and CP violation

Flavour eigenstates

(
K 0 = s̄γ5d

K
0

= d̄γ5s

)
6= CP eigenstates |K 0

±〉 = 1√
2
{|K 0〉 ∓ |K 0〉}

They are mixed in the physical eigenstates

{
|KL〉 ∼ |K 0

−〉+ ε|K 0
+〉

|KS〉 ∼ |K 0
+〉+ ε|K 0

−〉

Direct and indirect CP violation in K → ππ

direct : 

indirect : 

ε’

ε |ππ〉

|ππ〉

|KL〉 ∝ |K−〉 + ε|K+〉
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K → ππ amplitudes

Two isospin channels: ∆I = 1/2 and ∆I = 3/2

K → (ππ)I=0,2

Corresponding amplitudes defined as

A[K → (ππ)I] = AI exp(iδI) /w I = 0, 2 δ = strong phases

⇒ Need to compute the complex amplitudes A0 and A2
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∆I = 1/2 rule

� Experimentally we find

ω =
ReA2

ReAo
∼ 1/22

� Whereas “naive” theoretical estimate gives 1/2

⇒ Very long-standing puzzle, see e.g. [ Gaillard & Lee ’74, Altarelli & Maiani ’74]

� Can it be explained by large non-perturbative QCD effects ?

� Still not yet completely understood

Important progress have been made, in particular by RBC-UKQCD

� Note that the for the estimate of ε′/ε the experimental value of ω is used
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K → ππ amplitudes and K − K̄ mixing

We can derive the approximate formulae (see eg [De Rafael @ TASI’94]) (in the
isospin limit)

ε′ =
iω exp(iδ2 − δ0)√

2

[
ImA2

ReA2
− ImA0

ReA0

]

ε = e iφε

[
Im〈K̄ 0|H∆S=2

eff |K 0〉
∆mK

+
ImA0

ReA0

]
⇒ Related to K 0 − K̄ 0 mixing
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K → ππ amplitudes and K − K̄ mixing

CP violation related to ∆S = 1 and ∆S = 2 processes

� Kaon decay ∆S = 1 : K → ππ

� Neutral Kaon mixing ∆S = 2 : K ↔ K̄

d

s

u

d

u
W−

π+

π−

K̄0 Vus

V ∗
ud

s

u

u

d
W+

π−

π+

K̄0

d

d

u, c, t

s Vud

V ∗
us

Figures from [Lellouch@ Les Houches’09 ]
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K → ππ Overview
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Overview of the computation

Operator Product expansion

d̄

s̄

d

ū

u
W −→

s̄

d

ū

u

d̄

Describe K → (ππ)I=0,2 with an effective Hamiltonian [Ciuchini et al’ 94, Buchalla,

Buras, Lautenbacher ’96]

H∆s=1 =
GF√

2

{ 10∑
i=1

(
VudV ∗uszi (µ)− VtdV ∗tsyi (µ)

)
Qi (µ)

}

Amplitude given by A ∝ 〈ππ|H∆s=1|K 〉
Short distance effects factorized in the Wilson coefficients yi , zi

Long distance effects factorized in the matrix elements

〈ππ|Qi (µ)|K 〉 −→ task for the Lattice

See reviews by [Christ @ Kaon’09, Lellouch @ Les Houches’09, Sachrajda @ Lattice ’10], . . .
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Isospin channels

10 four-quark operators, actually reduces to 7 in four-dimention

Only 3 of these operators contribute to the ∆I = 3/2 channel

• A tree-level operator

• 2 electroweak penguins

No disconnect graphs contribute to the ∆I = 3/2 channel

s d

u u

⇒ A2 is much simpler than A0
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K → ππ Lattice results



K → (ππ)I =2 Results

� First computation (2012): Physical kinematic, Near physical pion mass

But only one coarse lattice spacing

IDSDR 323 × 64, with a−1 ∼ 1.37 GeV ⇒ a ∼ 0.14 fm, L ∼ 4.6 fm

� Latest computation (2015)

Two lattice spacing, nf = 2 + 1, large volume at the physical point

New discretisation of the Domain-Wall fermion forumlation:
Möbius Fermions [ Brower, Neff, Orginos ’12]

� 483 × 96, with a−1 ∼ 1.73 GeV ⇒ a ∼ 0.11 fm, L ∼ 5.5 fm

� 643 × 128 with a−1 ∼ 2.36 GeV ⇒ a ∼ 0.084 fm, L ∼ 5.4 fm

� amres ∼ 10−4
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K → (ππ)I =2 2015 Results

2012 [Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL’12, PRD’12 ]

ReA2 = 1.381(46)stat(258)syst 10−8 GeV ImA2 = −6.54(46)stat(120) syst10−13 GeV

2015 [Blum, Boyle, Christ, Frison, N.G., Janowski, Jung, Kelly, Lehner, Lytle, Mawhinney, Sachrajda, Soni, Hin, Zhang, PRD’15 ]

ReA2 = 1.50(4)stat(14)syst 10−8 GeV ImA2 = −6.99(20)stat(84) syst10−13 GeV
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A0, 2015

� First complete computation of the matrix elements 〈ππ|QiK 〉
(both isospin channel) with physical kinematics and quark masses

[Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang

PRL’15]

� Pion mass mπ = 143.1(2.0) MeV, single lattice spacing a ∼ 0.14 fm

Kaon mass mK = 490.6(2.4) MeV

� Physical kinematics achieved with G-Parity boundary conditions

[Kim, Christ, ’03 and ’09]

� Requires algorithmic development, dedicated generation of gauge
configurations, . . .

� See talk by C.Kelly and proceeding from Lattice’14

Another computation, [Ishizuka, Ishikawa, Ukawa, Yoshié ’15] with Wilson fermions at
threshold (unphysical kinematics)
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A0, 2015 update

Renormalisation at µ ∼ 1.5 GeV, combine with the Wilson coefficients

i Re(A0)(GeV) Im(A0)(GeV)

1 1.02(0.20)(0.07)× 10−7 0
2 3.63(0.91)(0.28)× 10−7 0

3 −1.19(1.58)(1.12)× 10−10 1.54(2.04)(1.45)× 10−12

4 −1.86(0.63)(0.33)× 10−9 1.82(0.62)(0.32)× 10−11

5 −8.72(2.17)(1.80)× 10−10 1.57(0.39)(0.32)× 10−12

6 3.33(0.85)(0.22)× 10−9 −3.57(0.91)(0.24)× 10−11

7 2.40(0.41)(0.00)× 10−11 8.55(1.45)(0.00)× 10−14

8 −1.33(0.04)(0.00)× 10−10 −1.71(0.05)(0.00)× 10−12

9 −7.12(1.90)(0.46)× 10−12 −2.43(0.65)(0.16)× 10−12

10 7.57(2.72)(0.71)× 10−12 −4.74(1.70)(0.44)× 10−13

Tot 4.66(0.96)(0.27)× 10−7 −1.90(1.19)(0.32)× 10−11

Exp 3.3201(18)× 10−7 -
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Standard Model “prediction” for ε′/ε

ε′/ε can be computed from

Re(ε′/ε) = Re

{
iω exp(iδ2 − δ0)√

2ε

[
Im(A2)

ReA2
− ImA0

ReA0

]}
Combining our new value of ImA0 and δ0 with

� our continuum value for ImA2

� the experimental value for ReA0, ReA2 and their ratio ω

we find
Re(ε′/ε) = 1.38(5.15)(4.43)× 10−4
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Standard Model “prediction” for ε′/ε

we find
Re(ε′/ε) = 1.38(5.15)(4.43)× 10−4

The experimental value (average) is Re(ε′/ε) = 16.6(2.3)× 10−4

� Agreement only approximate ∼ 2.1σ,

� Our error is ∼ 3 times larger than the experimental one

� But can be systematically reduced
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Standard Model “prediction” for ε′/ε

� The experimental value (average) is Re(ε′/ε) = 16.6(2.3)× 10−4

� Our result is Re(ε′/ε) = 1.38(5.15)(4.43)× 10−4

� [ Buras, Gorbahn, Jag̈er, Jamin ’15] combine our results for the matrix elements in a
different way and find Re(ε′/ε) = 1.9(4.5)× 10−4, ie ∼ 2.9σ

� Another analysis [Kitahara, Nierste, Tremper ’16] using new RGE for the Wilson
coefficients and our results for the matrix elements finds 1.06(5.07)× 10−4,
which is ∼ 2.8σ
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� [ Buras, Gorbahn, Jag̈er, Jamin ’15] combine our results for the matrix elements in a
different way and find Re(ε′/ε) = 1.9(4.5)× 10−4, ie ∼ 2.9σ

� Another analysis [Kitahara, Nierste, Tremper ’16] using new RGE for the Wilson
coefficients and our results for the matrix elements finds 1.06(5.07)× 10−4,
which is ∼ 2.8σ

� Another improvement on the Wilson coefficient on the way
[Cerdà-Sevilla, Gorbahn, Jäger, Kokulu @ Kaon 2016]
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ε′/ε Theory vs Theory vs Experiment

Recent updates

� [Gisbert & Pich Rept.Prog.Phys December 2017, QCD’18] claim that long-distance
re-scattering [effect] of the final pions in K → ππ were neglected

After corrections
Re(ε′/ε) = 15± 7× 10−4

in complete agreement with the SM

� Phase shift puzzle ?
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The phase shift puzzle

See [C.Kelly and T. Wang @Lattice2018] 2015 results

� For (ππ)I=2 we find δ2 = −11.0(0.3)o

� For (ππ)I=0 we find δ0 = 23.8(5.2)o

δ0 differs from the dispersive approach see e.g. [Colangelo, Gasser, Leutwyler ’01,

Colangelo, Passemar, Stoffer ’15]

δ2 = −11.4(?) and δ0 = 35.0(?)

⇒ Is there a issue there ?

New analysis (RBC-UKQCD 2018) δ2 = −11.3(0.1) and δ0 ∼ 31− 34(??)

This change is due to the presence of a close excited state

The effect on the matrix elements is currently under investigation
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Colangelo, Passemar, Stoffer ’15]

δ2 = −11.4(?) and δ0 = 35.0(?)

⇒ Is there a issue there ?

New analysis (RBC-UKQCD 2018) δ2 = −11.3(0.1) and δ0 ∼ 31− 34(??)

This change is due to the presence of a close excited state

The effect on the matrix elements is currently under investigation
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Neutral kaon mixing

Based on work done in collaboration with [Boyle, Hudspith, Lytle]

and now also with [Kettle, Soni, Tsang]
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Neutral kaon mixing in the SM

Indirect CP violation related to neutral kaon oscillations

in the SM this occurs though box diagrams with W exchange

W

W sd

ds

u,c,t u,c,t

−→
µ� MW

OPE

Factorise the non-perturbative contribution into

〈K 0|O∆S=2
LL (µ)|K 0〉 =

8

3
F 2
KM

2
KBK (µ) w/ O∆S=2

LL = (s̄γµ(1− γ5)d)(s̄γµ(1− γ5)d)

Related to ε via CKM parameters, schematically ε ∝ VCKM × C(µ)× BK (µ)

γ

α

α

dm∆

K
ε

K
εsm∆ & dm∆

ubV

βsin 2
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and beyond

In the SM, neutral kaon mixing occurs through W-exchanges → (V − A)

O∆s=2
1 = (s̄ (V − A) d) (s̄ (V − A) d)

Beyond the SM, other Dirac structure appear in the generic Hamiltonian

H∆s=2 =
5∑

i=1

Ci (µ)O∆s=2
i (µ) .

We express them in terms of Lorentz matrices Vector, Axial, Scalar, Pseudo-scalar,
Tensor

(V − A)× (V + A)

(S − P)× (S + P)

(S − P)× (S − P)

TT × TT

On the lattice, we compute 〈K̄ 0|O∆s=2
i |K 0〉
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BK SM kaon mixing - Results

FLAG 2013 quotes an error of 1.3% dominated by the perturbative matching

Most recent determinations, in MS at 3 GeV, BMS
K (3GeV)

Collaboration Nf Discretisation Result

RBC-UKQCD 2 + 1 Domain-Wall 0.5293(17)stat+syst(106)PT

SWME 2 + 1 Staggered 0.518(3)stat(26)syst

ETM 2 + 1 + 1 Twisted Mass 0.506(17)stat+syst(3)PT

Note that the conversion Lattice → MS is only permformed at 1-loop in PT

But 2-loop on the way see [Jäger & Kvedaraite @ Lattice 2018]
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BK SM kaon mixing - Results

0.65 0.70 0.75 0.80 0.85

=
+

+
=

+
=

RBC 04
JLQCD 08
ETM 10A
ETM 12D

FLAG average for =

RBC/UKQCD 07A, 08
Aubin 09
SWME 10
RBC/UKQCD 10B
BMW 11
SWME 11A
Laiho 11
RBC/UKQCD 12A
SWME 13
SWME 13A
SWME 14
RBC/UKQCD 14B
SWME 15A
RBC/UKQCD 16

FLAG average for = +

ETM 15

FLAG average for = + +

Nicolas Garron (University of Liverpool) Kaons on the lattice 26 / 32



BSM kaon mixing - Results

0.4 0.5

=
+

+
=

+
=

0.65 0.85 0.7 0.9 0.4 0.6 0.8

ETM 12D

our average for =

RBC/UKQCD 12E

SWME 14C

SWME 15A

RBC/UKQCD 16

our average for = +

ETM 15

our average for = + +

Nicolas Garron (University of Liverpool) Kaons on the lattice 27 / 32



BSM kaon mixing - Results
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Other perspectives

� QCD+QED: Huge effort (BMWc, ETMc, QCDSF, RBC-UKQCD, . . . )

Applications to decay amplitudes, Kl2,Kl3 . . .

See e.g. [Sachrajda @ Lattice2018]

and to K → ππ, see [Christ & Feng @ Lattice2017]
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Other perspectives

� Improving the interface Lattice/Phenomenology

Schematically

experimental value ∼
∑
i

Ci (µ)︸ ︷︷ ︸
PT

×〈Oi (µ)︸ ︷︷ ︸
Lattice

〉

N Matching Lattice/Pheno: Lattice
NPR→ intermediate renorm. scheme

PT→ MS

N Matching to Nf = 3 requires PT to be under control at µ ∼ mc

Several improvement in progress

N Higher order in PT, see Jäger & Kvedaraite @ Lattice 2018 for BK

N Better(?) NPR schemes, [Cahill, NG, Gorbahn, Gracey, Rakow, . . . ]

N Non-perturbative computation of the Wilson coefficient [Bruno @ Lattice 2017]

N Renormalisation in position space [Tomi @ Lattice 2018]

N . . .
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Conclusions & Outlook

Lattice community is very active in the Kaon area

� Some observables are known with very good precisions and provide important
checks of the SM and conatraints on BSM theories (ex: Vus

N Dynamical fermions Nf = 2, 2 + 1, 2 + 1 + 1 flavours

N Physical quark masses, several lattice spacings, large volume etc.

N Several discretisation, including chiral fermions

N Huge effort to incorporate QED effects

� New quantities, non-standard

N New Last 5-8 years have seen tremendous progress in K → ππ decays and
K − K̄ mixing

N Progress toward long-distance contribution to K → πνν̄

� Improving the connection Lattice / Phenomenology
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Backup
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Definitions of ε and ε′

ε =
A [KL → (ππ)0]

A [KS → (ππ)0]

ε′ =
1√
2

(
A [KL → (ππ)2]− ε× A [KS → (ππ)2]

A [KS → (ππ)0]

)

Or in terms of ε′/ε

ε′

ε
=

1√
2

(
A [KL → (ππ)2]

A [KL → (ππ)0]
− A [KS → (ππ)2]

A [KS → (ππ)0]

)
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Non Perturbative Renormalisation (NPR)
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A few words on the renormalisation

First step: remove the divergences

Non-perturbative Renormalisation à la Rome-Southampton [Martinelli et al ’95]

Q lat
i (a)→ QMOM

i (µ, a) = Z (µ, a)ijQ
lat
j (a)

and take the continuum limit

QMOM
i (µ, 0) = lim

a2→0
QMOM

i (µ, a)

Second step: Matching to MS, done in perturbation theory [Sturm et al., Lehner

and Sturm, Gorbahn and Jäger, Gracey, . . . ]

QMOM
i (µ, 0)→ QMS

i (µ) = (1 + r1αS(µ) + r2αS(µ)2 + . . .)ijQ
MOM
j (µ, 0)
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The Rome Southampon method [Martinelli et al ’95]

Consider a quark bilinear OΓ = ψ̄2Γψ1

Define
Π(x2, x1) = 〈ψ2(x2)OΓ(0)ψ̄1(x1)〉 = 〈S2(x2, 0)ΓS1(0, x1)〉

In Fourier space S(p) =
∑

x S(x , 0)e ip.x

Π(p2, p1) = 〈S2(p2)ΓS1(p1)†)〉

Amputated Green function

Λ(p2, p1) = 〈S2(p2)−1〉〈S2(p2)ΓS1(p1)†)〉〈(S2(p1)†
−1

)〉

Rome Southampton original scheme (RI-MOM), p1 = p2 = p and µ =
√

p2

Z (µ, a)× lim
m→0

Tr(ΓΛ(p, p))µ2=p2 = Tree
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The Rome Southampon method [Martinelli et al ’95]

Remarks

� Can be generalised to the 4q-operators mixing case

� Non-perturbative off-shell and massless scheme(s)

� Requires gauge fixing (unlike Schrödinger Functional)

Note that the choice of projector and kinematics is not unique

� In particular, SMOM scheme

p1 6= p2 and p2
1 = p2

2 = (p1 − p2)2

� Can use q/ as projector

� In principle the results should agree after conversion to MS, and extrapolation
to the continuum limit
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Renormalisation basis of the ∆F = 2 operators

As for BSM neutral meson mixing one needs to renormalise 5 operators ,

(27, 1) O∆S=2
1 = γµ × γµ + γµγ5 × γµγ5

(8, 8)

{
O∆s=2

2 = γµ × γµ − γµγ5 × γµγ5

O∆s=2
3 = 1× 1 − γ5 × γ5

(6, 6)

{
O∆s=2

4 = 1× 1 + γ5 × γ5

O∆s=2
5 = σµν × σµν

So the renormalisation matrix has the form

Z∆S=2 =


Z11

Z22 Z23

Z32 Z33

Z44 Z45

Z54 Z55


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More details on NPR

� Setup is the similar to RBC-UKQCD

In particular we follow [Arthur & Boyle ’10]

� We implement momentum sources [Gockeler et al ’98] to achieve high stat.
accuracy

� Non exceptional kinematic with symmetric point p2
1 = p2

2 = (p2 − p1)2

s

d s

d

p1

p2

p2

p1

to suppress IR contaminations [Sturm et al’, RBC-UKQCD ’09 ’10]
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Choice of SMOM scheme

� Orientation of the momenta kept fixed

p1 =
2π

L
[n , 0 , n , 0] p2 =

2π

L
[0 , n , n , 0]

⇒ Well defined continuum limit

� We chose γµ projectors, for example

P(γµ) ↔ γµ × γµ + γµγ5 × γµγ5

⇒ Z factor of a four quark operator O in the scheme (γµ, γµ) defined by

lim
m→0

Z
(γµ,γµ)
O

Z 2
V

P(γµ) {ΛO}(
P(γµ) {ΛV }

)2

∣∣∣∣∣
µ2=p2

= Tree

� Note that this defines an off-shell massless scheme
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Step-scaling

� Rome-Southampton method requires a windows

Λ2
QCD � µ2 � (π/a)2

� And our lattice spacings are a−1 ∼ 2.2, 1.7, 1.3GeV

� we follow [Arthur & Boyle ’10] and [Arthur, Boyle, NG, Kelly, Lytle ’11] and define

σ(µ2, µ1) = lim
a2→0

lim
m→0

[
(PΛ(µ2, a))−1PΛ(µ1, a)

]
= lim

a2→0
Z (µ2, a)Z (µ1, a)−1

� We use 3 lattice spacings to compute σ(2 GeV, 1.5 GeV) but only the two

finest to compute σ(3 GeV, 2 GeV) and get

Z (3 GeV, a) = σ(3 GeV, 2 GeV)σ(2 GeV, 1.5 GeV) Z (1.5 GeV, a)
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Pole subtraction

� The Green functions might suffer from IR poles, ∼ 1/p2, or ∼ 1/m2
π which can

pollute the signal

� In principle these poles are suppressed at high µ but they appear to be quite
important at µ ∼ 3 GeV for some quantities which allow for pion exchanges

� The traditional way is to “subtract “ these contamination by hand

� However these contaminations are highly suppressed in a SMOM scheme, with
non-exceptional kinematics

� We argue that this pion pole subtractions is not-well under control and that
schemes with exceptional kinematics should be discarded
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Pole subtraction
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Pole subtraction
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Better MOM schemes ?



More MOM schemes

Renormalisation scale is µ, given by the choice of kinematics

� Original RI-MOM scheme

p1 = p2 and µ2 ≡ p2
1 = p2

2

But this lead to “exceptional kinematics’ and bad IR poles

� then RI-SMOM scheme

p1 6= p2 and µ2 ≡ p2
1 = p2

2 = (p1 − p2)2

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, . . . ]

� We are now studying a generalisation (see also [Bell and Gracey ])

p1 6= p2 and µ2 ≡ p2
1 = p2

2 , (p1 − p2)2 = ωµ2 where ω ∈ [0, 4]

Note that ω = 0↔ RI −MOM and ω = 1↔ RI − SMOM
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