

Kaons on the lattice

Nicolas Garron

Introduction

Kaons are ideally suited for Lattice QCD

- Mesons: simpler and numerically cleaner than baryons
- Strange-light system: not too many different scales (compared eg. to charm and bottom)
- Can use the same discretisations for everything: light, strange, valence and sea quarks

Introduction

Kaons are ideally suited for Lattice QCD

- Mesons: simpler and numerically cleaner than baryons
- Strange-light system: not too many different scales (compared eg. to charm and bottom)
- Can use the same discretisations for everything: light, strange, valence and sea quarks

What's new?

- Can now reach "physical" dynamical quark masses with various discretisations (Including Chiral fermions!)
- Inclusion of EM corrections in progress

Introduction

Kaons are ideally suited for Lattice QCD

- Mesons: simpler and numerically cleaner than baryons
- Strange-light system: not too many different scales (compared eg. to charm and bottom)
- Can use the same discretisations for everything: light, strange, valence and sea quarks

What's new?

- Can now reach "physical" dynamical quark masses with various discretisations (Including Chiral fermions!)
- Inclusion of EM corrections in progress

Different lattice collaborations use $N_f = (2), 2 + 1, 2 + 1 + 1$ dynamical flavours with different discretisations

Outline

- \blacksquare KI_3 and V_{us}
- Rare kaon decay $K \to \pi \nu \bar{\nu}$
- $K \rightarrow \pi\pi$ decay
- Kaon Mixing with and beyond the Standard Model
- Other perspective

K_{13} semileptonic form factor

Diagram from

[Aida X. El-Khadra @ Lattice2018]

Obtain $|V_{us}f_{+}(0)|$ from the experimental rate

$$\Gamma_{K \to \pi l \nu} = C_K^2 \frac{G_F^2 m_K^5}{192 \pi^2} I S_{EW} \left[1 + 2 \Delta_{SU(2)} + 2 \Delta_{EM} \right] |V_{us} f_+(0)|^2$$

I is the phase space integral

 $\Delta_{SU(2)}$ is the ispospin breaking correction

 S_{EW} is the short distance electroweak correction

 $\Delta_{\it EM}$ is the long distance electromagnetic correction

and $f_{+}(0)$ is the form factor we compute on the lattice

K_{13} semileptonic form factor

Obtain $|V_{us}f_{+}(0)|$ from the experimental rate

$$\Gamma_{K o \pi I
u} = C_K^2 rac{G_F^2 m_K^5}{192 \pi^2} I S_{EW} \left[1 + 2 \Delta_{SU(2)} + 2 \Delta_{EM} \right] |V_{us} f_+(0)|^2$$

 \Rightarrow determine $f_{+}(0)$ from the lattice to constraint V_{us}

K_{I3} semileptonic form factor II.

Talk from [Aida X. El-Khadra @ Lattice2018]

Preliminary results from Fermilab-MILC

K_{I3} semileptonic form factor II.

Talk from [Aida X. El-Khadra @ Lattice2018]

Preliminary results from Fermilab-MILC

K_{13} semileptonic form factor

- Example of well-known quantity on the lattice
- Computed by many collaborations
- Allows for precision phenomenology
- All the effects/systematic erros have to be well under control
- Preliminary results from Fermilab-MILC find

$$\Delta_{u} = |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} - 1$$

= $-0.00151(38)_{f_{+}(0)}(35)_{f_{K}/f_{\pi}}(36)_{exp}(27)_{EM}$

Rare kaon decay

Relevant for NA62

- $K \to \pi \nu \bar{\nu}$ or $K \to \pi I^+ I^-$
- ullet FCNF, highly suppressed in the SM ($Br\sim 10^{-10}$), sensitivity to New-Physics
- $K \to \pi \nu \bar{\nu}$ is dominated by short-distance top-quark contribution
- But long-distance contribution from the charm is estimated to be of the same order as the SM uncertainty (6-8%)

[Isidori, Mescia, Smith '05, Buras, Buttazzo, Girrbach-Noe '15]

Lattice exploratory studies of these long-distance contributions
 [Christ, Feng, Portelli, Sachrajda '16, Bai, Christ, Feng, Lawson, Portelli, Sachrajda '17]

Rare kaon decay

From [Xu Feng @Lattice 2017]

- Second order Weak interaction process
- Insertion of 2 Hamiltonian: $\Delta S = 1$ and $\Delta S = 0$
- Non-standard computation, requires new techniques to be developed
- Proof of concept and feasibility but no physical result yet

${\cal K} o \pi\pi$ and CP violation

- First discovery of CP violation was made in kaon system in 1964 (Christenson, Cronin, Fitch and Turlay)
- Noble prize in 1980 (Cronin and Fitch)
- Direct CP violation discovered in kaon decays at CERN and Fermilab
 [NAxx, KTeV '90-99] ... (Long story, controversies, drama, etc)
- Finally, very nice measurements, numbers from NA48 and KTeV:

$$\begin{cases} \textit{Indirect} & |\varepsilon| = (2.228 \pm 0.011) \times 10^{-3} \\ \\ \textit{Direct} & \textit{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = (1.66 \pm 0.23) \times 10^{-3} \\ \\ & = (1.65 \pm 0.26) \times 10^{-3} \end{cases} \text{ [PDG2018]}$$

- Although very small effects, both direct and indirect CP violation are well established (experimentally) in $K \to \pi\pi$
- Expect sensitivity to New Physics
- Nice framework to test the Standard Model and constrain BSM theories

- Although very small effects, both direct and indirect CP violation are well established (experimentally) in $K \to \pi\pi$
- Expect sensitivity to New Physics
- Nice framework to test the Standard Model and constrain BSM theories

What about the theoretical side?

- $m{\varepsilon}$ and neutral kaon mixing "under control" SM and BSM contributions know with *decent* precision
- ε' and $K \to \pi\pi$: first "complete" computation only in 2015 Uncertainty on ε'/ε : Experiment $\sim 2 \times 10^{-4}$ (14%) vs Theory (5 – 7) \times 10⁻⁴

Flavour eigenstates
$$\left(\begin{array}{c} K^0 = \overline{s}\gamma_5 d \\ \overline{K}^0 = \overline{d}\gamma_5 s \end{array}\right) \neq {\sf CP} \ {\sf eigenstates} \ |K^0_\pm\rangle = \frac{1}{\sqrt{2}}\{|K^0\rangle \mp |\overline{K}^0\rangle\}$$

They are mixed in the physical eigenstates $\begin{cases} |K_L\rangle & \sim & |K_-^0\rangle + \varepsilon |K_+^0\rangle \\ |K_S\rangle & \sim & |K_+^0\rangle + \varepsilon |K_-^0\rangle \end{cases}$

Direct and indirect CP violation in $K \to \pi\pi$

$K \to \pi\pi$ amplitudes

Two isospin channels:
$$\Delta I = 1/2$$
 and $\Delta I = 3/2$

$$K \rightarrow (\pi\pi)_{I=0,2}$$

Corresponding amplitudes defined as

$$A[K \rightarrow (\pi\pi)_{\rm I}] = A_{\rm I} \exp(i\delta_{\rm I})$$
 /w ${\rm I}=0,2$ $\delta={\rm strong}$ phases

$K \to \pi\pi$ amplitudes

Two isospin channels: $\Delta I = 1/2$ and $\Delta I = 3/2$

$$K \rightarrow (\pi\pi)_{I=0,2}$$

Corresponding amplitudes defined as

$$A[K \rightarrow (\pi\pi)_{\rm I}] = A_{\rm I} \exp(i\delta_{\rm I})$$
 /w ${\rm I}=0,2$ $\delta={\rm strong}$ phases

 \Rightarrow Need to compute the complex amplitudes A_0 and A_2

$$\Delta I = 1/2$$
 rule

■ Experimentally we find

$$\omega = \frac{{\rm Re} A_2}{{\rm Re} A_o} \sim 1/22$$

$$\Delta I = 1/2$$
 rule

Experimentally we find

$$\omega = \frac{{\rm Re} A_2}{{\rm Re} A_o} \sim 1/22$$

- Whereas "naive" theoretical estimate gives 1/2
 - ⇒ Very long-standing puzzle, see e.g. [Gaillard & Lee '74, Altarelli & Maiani '74]

$$\Delta I = 1/2$$
 rule

Experimentally we find

$$\omega = \frac{\mathrm{Re}A_2}{\mathrm{Re}A_o} \sim 1/22$$

- Whereas "naive" theoretical estimate gives 1/2
 - ⇒ Very long-standing puzzle, see e.g. [Gaillard & Lee '74, Altarelli & Maiani '74]
- Can it be explained by large non-perturbative QCD effects?
- Still not yet completely understood
 Important progress have been made, in particular by RBC-UKQCD
- Note that the for the estimate of ϵ'/ϵ the experimental value of ω is used

$K ightarrow \pi\pi$ amplitudes and $K - \bar{K}$ mixing

We can derive the approximate formulae (see eg [De Rafael @ TASI'94]) (in the isospin limit)

$$\varepsilon' = \frac{i\omega \exp(i\delta_2 - \delta_0)}{\sqrt{2}} \left[\frac{\mathrm{Im} A_2}{\mathrm{Re} A_2} - \frac{\mathrm{Im} A_0}{\mathrm{Re} A_0} \right]$$

$$\varepsilon = e^{i\phi_{\varepsilon}} \left[\frac{\mathrm{Im} \langle \bar{K}^0 | H_{\mathrm{eff}}^{\Delta S = 2} | K^0 \rangle}{\Delta m_K} + \frac{\mathrm{Im} A_0}{\mathrm{Re} A_0} \right]$$

 \Rightarrow Related to $K^0 - \bar{K}^0$ mixing

$K \to \pi\pi$ amplitudes and $K - \bar{K}$ mixing

CP violation related to $\Delta S=1$ and $\Delta S=2$ processes

- Kaon decay $\Delta S = 1 : K \rightarrow \pi \pi$
- Neutral Kaon mixing $\Delta S = 2 : K \leftrightarrow \bar{K}$

Figures from [Lellouch@ Les Houches'09]

 $K \to \pi\pi$ Overview

Overview of the computation

Operator Product expansion

Describe $K \to (\pi\pi)_{I=0,2}$ with an effective Hamiltonian [Ciuchini et al' 94, Buchalla, Buras, Lautenbacher '96]

$$H^{\Delta s=1} = rac{G_F}{\sqrt{2}} \Big\{ \sum_{i=1}^{10} \left(V_{ud} V_{us}^* Z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right) Q_i(\mu) \Big\}$$

Overview of the computation

Operator Product expansion

Describe $K \to (\pi\pi)_{I=0,2}$ with an effective Hamiltonian [Ciuchini et al' 94, Buchalla, Buras, Lautenbacher '96]

$$H^{\Delta s=1} = rac{G_F}{\sqrt{2}} \Big\{ \sum_{i=1}^{10} \left(V_{ud} V_{us}^* z_i(\mu) - V_{td} V_{ts}^* y_i(\mu) \right) Q_i(\mu) \Big\}$$

Amplitude given by $A \propto \langle \pi \pi | H^{\Delta s=1} | K \rangle$

Short distance effects factorized in the Wilson coefficients y_i , z_i Long distance effects factorized in the matrix elements

$$\langle \pi \pi | Q_i(\mu) | K \rangle \longrightarrow \text{task for the Lattice}$$

Isospin channels

10 four-quark operators, actually reduces to 7 in four-dimention

Only 3 of these operators contribute to the $\Delta I = 3/2$ channel

- A tree-level operator
- 2 electroweak penguins

No disconnect graphs contribute to the $\Delta I = 3/2$ channel

 $\Rightarrow A_2$ is much simpler than A_0

$K \rightarrow (\pi\pi)_{I=2}$ Results

■ First computation (2012): Physical kinematic, Near physical pion mass But only one coarse lattice spacing IDSDR $32^3 \times 64$, with $a^{-1} \sim 1.37~{\rm GeV} \Rightarrow a \sim 0.14~{\rm fm}$, $L \sim 4.6~{\rm fm}$

$K \rightarrow (\pi\pi)_{I=2}$ Results

■ First computation (2012): Physical kinematic, Near physical pion mass But only one coarse lattice spacing IDSDR $32^3 \times 64$, with $a^{-1} \sim 1.37~{\rm GeV} \Rightarrow a \sim 0.14~{\rm fm}$, $L \sim 4.6~{\rm fm}$

■ Latest computation (2015)

Two lattice spacing, $n_f=2+1$, large volume at the physical point New discretisation of the Domain-Wall fermion forumlation: Möbius Fermions [Brower, Neff, Orginos '12]

- $48^3 \times 96$, with $a^{-1} \sim 1.73 \text{ GeV} \Rightarrow a \sim 0.11 \text{ fm}$, $L \sim 5.5 \text{ fm}$
- $64^3 \times 128$ with $a^{-1} \sim 2.36$ GeV $\Rightarrow a \sim 0.084$ fm, $L \sim 5.4$ fm
- $am_{res} \sim 10^{-4}$

$$K \rightarrow (\pi\pi)_{I=2}$$
 2015 Results

2012 [Blum, Boyle, Christ, N.G.,Goode, Izubuchi, Jung, Kelly, Lehner, Lightman, Liu, Lytle, Mawhinney, Sachrajda, Soni, Sturm, PRL'12, PRD'12] Re $A_2=1.381(46)_{\rm stat}(258)_{\rm syst}\,10^{-8}\,{\rm GeV}$ Im $A_2=-6.54(46)_{\rm stat}(120)_{\rm syst}\,10^{-13}\,{\rm GeV}$

2015 [Blum, Boyle, Christ, Frison, N.G., Janowski, Jung, Kelly, Lehner, Lytle, Mawhinney, Sachrajda, Soni, Hin, Zhang, PRD'15] $Re\ A_2 = 1.50(4)_{\rm stat}(14)_{\rm syst}\ 10^{-8}\ {\rm GeV} \qquad \qquad Im\ A_2 = -6.99(20)_{\rm stat}(84)_{\rm syst}10^{-13}\ {\rm GeV}$

A_0 , 2015

■ First complete computation of the matrix elements $\langle \pi\pi | Q_iK \rangle$ (both isospin channel) with physical kinematics and quark masses

[Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang PRL'15]

- lacktriangleq Pion mass $m_\pi=143.1(2.0)~{
 m MeV}$, single lattice spacing $a\sim 0.14~{
 m fm}$ Kaon mass $m_K=490.6(2.4)~{
 m MeV}$
- Physical kinematics achieved with G-Parity boundary conditions

[Kim, Christ, '03 and '09]

- Requires algorithmic development, dedicated generation of gauge configurations, . . .
- See talk by C.Kelly and proceeding from Lattice'14

A_0 , 2015

First complete computation of the matrix elements $\langle \pi\pi | Q_iK \rangle$ (both isospin channel) with physical kinematics and quark masses

[Bai, Blum, Boyle, Christ, Frison, N.G., Izubuchi, Jung, Kelly, Lehner, Mawhinney, Sachrajda, Soni, Zhang PRL'15]

- lacktriangleq Pion mass $m_\pi=143.1(2.0)~{
 m MeV}$, single lattice spacing $a\sim 0.14~{
 m fm}$ Kaon mass $m_K=490.6(2.4)~{
 m MeV}$
- Physical kinematics achieved with G-Parity boundary conditions

[Kim, Christ, '03 and '09]

- Requires algorithmic development, dedicated generation of gauge configurations, . . .
- See talk by C.Kelly and proceeding from Lattice'14

Another computation, [Ishizuka, Ishikawa, Ukawa, Yoshié '15] with Wilson fermions at threshold (unphysical kinematics)

A₀, 2015 update

Renormalisation at $\mu \sim 1.5~{
m GeV}$, combine with the Wilson coefficients

i	$Re(A_0)(GeV)$	$\operatorname{Im}(A_0)(\operatorname{GeV})$
1 2	$\begin{array}{c} 1.02(0.20)(0.07)\times 10^{-7} \\ 3.63(0.91)(0.28)\times 10^{-7} \end{array}$	0 0
3 4 5 6	$\begin{array}{l} -1.19(1.58)(1.12)\times 10^{-10} \\ -1.86(0.63)(0.33)\times 10^{-9} \\ -8.72(2.17)(1.80)\times 10^{-10} \\ 3.33(0.85)(0.22)\times 10^{-9} \end{array}$	$1.54(2.04)(1.45) \times 10^{-12}$ $1.82(0.62)(0.32) \times 10^{-11}$ $1.57(0.39)(0.32) \times 10^{-12}$ $-3.57(0.91)(0.24) \times 10^{-11}$
7 8 9 10	$2.40(0.41)(0.00) \times 10^{-11} \ -1.33(0.04)(0.00) \times 10^{-10} \ -7.12(1.90)(0.46) \times 10^{-12} \ 7.57(2.72)(0.71) \times 10^{-12}$	$8.55(1.45)(0.00) \times 10^{-14} \ -1.71(0.05)(0.00) \times 10^{-12} \ -2.43(0.65)(0.16) \times 10^{-12} \ -4.74(1.70)(0.44) \times 10^{-13}$
Tot	$4.66(0.96)(0.27) \times 10^{-7}$	$-1.90(1.19)(0.32) \times 10^{-11}$

Exp
$$3.3201(18) \times 10^{-7}$$

A₀, 2015 update

Renormalisation at $\mu \sim 1.5~{
m GeV}$, combine with the Wilson coefficients

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i	$Re(A_0)(GeV)$	$\operatorname{Im}(A_0)(\operatorname{GeV})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5	$-1.86(0.63)(0.33) \times 10^{-9} \\ -8.72(2.17)(1.80) \times 10^{-10}$	$1.54(2.04)(1.45) \times 10^{-12}$ $1.82(0.62)(0.32) \times 10^{-11}$ $1.57(0.39)(0.32) \times 10^{-12}$ $-3.57(0.91)(0.24) \times 10^{-11}$
	8	$-1.33(0.04)(0.00) \times 10^{-10}$ $-7.12(1.90)(0.46) \times 10^{-12}$	$8.55(1.45)(0.00) \times 10^{-14} \ -1.71(0.05)(0.00) \times 10^{-12} \ -2.43(0.65)(0.16) \times 10^{-12} \ -4.74(1.70)(0.44) \times 10^{-13}$
Tot $4.66(0.96)(0.27) \times 10^{-7}$ $-1.90(1.19)(0.32) \times 10^{-}$	Tot	$4.66(0.96)(0.27)\times10^{-7}$	$-1.90(1.19)(0.32) \times 10^{-11}$

Exp
$$3.3201(18) \times 10^{-7}$$

A₀, 2015 update

Renormalisation at $\mu \sim 1.5~{
m GeV}$, combine with the Wilson coefficients

i	$Re(A_0)(GeV)$	$Im(A_0)(GeV)$
1	$1.02(0.20)(0.07) \times 10^{-7}$	0
2	$3.63(0.91)(0.28) \times 10^{-7}$	0
3 4 5 6	$-1.19(1.58)(1.12) \times 10^{-10} \ -1.86(0.63)(0.33) \times 10^{-9} \ -8.72(2.17)(1.80) \times 10^{-10} \ 3.33(0.85)(0.22) \times 10^{-9}$	$1.54(2.04)(1.45) \times 10^{-12}$ $1.82(0.62)(0.32) \times 10^{-11}$ $1.57(0.39)(0.32) \times 10^{-12}$ $-3.57(0.91)(0.24) \times 10^{-11}$
7 8 9 10	$2.40(0.41)(0.00) \times 10^{-11} \ -1.33(0.04)(0.00) \times 10^{-10} \ -7.12(1.90)(0.46) \times 10^{-12} \ 7.57(2.72)(0.71) \times 10^{-12}$	$8.55(1.45)(0.00) \times 10^{-14} \ -1.71(0.05)(0.00) \times 10^{-12} \ -2.43(0.65)(0.16) \times 10^{-12} \ -4.74(1.70)(0.44) \times 10^{-13}$
Tot	$4.66(0.96)(0.27) \times 10^{-7}$	$-1.90(1.19)(0.32) \times 10^{-11}$
	·	·

Exp
$$3.3201(18) \times 10^{-7}$$

 ε'/ε can be computed from

$$Re(\varepsilon'/\varepsilon) = Re\left\{\frac{i\omega \exp(i\delta_2 - \delta_0)}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}(A_2)}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0}\right]\right\}$$

Combining our new value of $Im A_0$ and δ_0 with

- our continuum value for ImA₂
- the experimental value for ReA_0 , ReA_2 and their ratio ω

we find

$$Re(\varepsilon'/\varepsilon) = 1.38(5.15)(4.43) \times 10^{-4}$$

we find

$$Re(\varepsilon'/\varepsilon) = 1.38(5.15)(4.43) \times 10^{-4}$$

The experimental value (average) is $Re(\varepsilon'/\varepsilon) = 16.6(2.3) \times 10^{-4}$

- Agreement only approximate $\sim 2.1\sigma$,
- $lue{}$ Our error is \sim 3 times larger than the experimental one
- But can be systematically reduced

- The experimental value (average) is $Re(\varepsilon'/\varepsilon) = 16.6(2.3) \times 10^{-4}$
- Our result is $Re(\varepsilon'/\varepsilon) = 1.38(5.15)(4.43) \times 10^{-4}$
- [Buras, Gorbahn, Jager, Jamin '15] combine our results for the matrix elements in a different way and find $Re(\varepsilon'/\varepsilon) = 1.9(4.5) \times 10^{-4}$, ie $\sim 2.9\sigma$
- Another analysis [Kitahara, Nierste, Tremper '16] using new RGE for the Wilson coefficients and our results for the matrix elements finds $1.06(5.07) \times 10^{-4}$, which is $\sim 2.8\sigma$

- The experimental value (average) is $Re(\varepsilon'/\varepsilon) = 16.6(2.3) \times 10^{-4}$
- Our result is $Re(\varepsilon'/\varepsilon) = 1.38(5.15)(4.43) \times 10^{-4}$
- [Buras, Gorbahn, Jager, Jamin '15] combine our results for the matrix elements in a different way and find $Re(\varepsilon'/\varepsilon) = 1.9(4.5) \times 10^{-4}$, ie $\sim 2.9\sigma$
- Another analysis [Kitahara, Nierste, Tremper '16] using new RGE for the Wilson coefficients and our results for the matrix elements finds $1.06(5.07) \times 10^{-4}$, which is $\sim 2.8\sigma$
- Another improvement on the Wilson coefficient on the way [Cerdà-Sevilla, Gorbahn, Jäger, Kokulu @ Kaon 2016]

ε'/ε Theory vs Experiment

Recent updates

■ [Gisbert & Pich Rept.Prog.Phys December 2017, QCD'18] claim that long-distance re-scattering [effect] of the final pions in $K \to \pi\pi$ were neglected

After corrections

$$\operatorname{Re}(\varepsilon'/\varepsilon) = 15 \pm 7 \times 10^{-4}$$

in complete agreement with the SM

ε'/ε Theory vs Experiment

Recent updates

■ [Gisbert & Pich Rept.Prog.Phys December 2017, QCD'18] claim that long-distance re-scattering [effect] of the final pions in $K\to\pi\pi$ were neglected

$$\operatorname{Re}(\varepsilon'/\varepsilon) = 15 \pm 7 \times 10^{-4}$$

in complete agreement with the SM

Phase shift puzzle ?

The phase shift puzzle

See [C.Kelly and T. Wang @Lattice2018] 2015 results

- For $(\pi\pi)_{I=2}$ we find $\delta_2 = -11.0(0.3)^{\circ}$
- For $(\pi\pi)_{I=0}$ we find $\delta_0 = 23.8(5.2)^{\circ}$

 δ_0 differs from the dispersive approach see e.g. [Colangelo, Gasser, Leutwyler '01, Colangelo, Passemar, Stoffer '15]

$$\delta_2 = -11.4(?)$$
 and $\delta_0 = 35.0(?)$

 \Rightarrow Is there a issue there ?

The phase shift puzzle

See [C.Kelly and T. Wang @Lattice2018] 2015 results

- For $(\pi\pi)_{I=2}$ we find $\delta_2 = -11.0(0.3)^{\circ}$
- For $(\pi\pi)_{I=0}$ we find $\delta_0 = 23.8(5.2)^{\circ}$

 δ_0 differs from the dispersive approach see e.g. [Colangelo, Gasser, Leutwyler '01, Colangelo, Passemar, Stoffer '15]

$$\delta_2 = -11.4(?)$$
 and $\delta_0 = 35.0(?)$

 \Rightarrow Is there a issue there?

New analysis (RBC-UKQCD 2018) $\delta_2 = -11.3(0.1)$ and $\delta_0 \sim 31 - 34(??)$

The phase shift puzzle

See [C.Kelly and T. Wang @Lattice2018] 2015 results

- For $(\pi\pi)_{I=2}$ we find $\delta_2 = -11.0(0.3)^{\circ}$
- For $(\pi\pi)_{I=0}$ we find $\delta_0 = 23.8(5.2)^{\circ}$

 δ_0 differs from the dispersive approach see e.g. [Colangelo, Gasser, Leutwyler '01, Colangelo, Passemar, Stoffer '15]

$$\delta_2 = -11.4(?)$$
 and $\delta_0 = 35.0(?)$

 \Rightarrow Is there a issue there ?

New analysis (RBC-UKQCD 2018) $\delta_2 = -11.3(0.1)$ and $\delta_0 \sim 31-34(\ref{eq:constraint})$

This change is due to the presence of a close excited state

The effect on the matrix elements is currently under investigation

Neutral kaon mixing

Based on work done in collaboration with [Boyle, Hudspith, Lytle] and now also with [Kettle, Soni, Tsang]

Neutral kaon mixing in the SM

Indirect CP violation related to neutral kaon oscillations

in the SM this occurs though box diagrams with W exchange

Factorise the non-perturbative contribution into

$$\langle \overline{K}^0 | \mathcal{O}_{LL}^{\Delta S=2}(\mu) | K^0 \rangle = \frac{8}{3} F_K^2 M_K^2 B_K(\mu) \qquad \text{w} / \mathcal{O}_{LL}^{\Delta S=2} = (\overline{s} \gamma_\mu (1 - \gamma_5) d) (\overline{s} \gamma^\mu (1 - \gamma_5) d)$$

Related to ε via CKM parameters, schematically $\varepsilon \propto V_{\rm CKM} \times C(\mu) \times B_K(\mu)$

and beyond

In the SM, neutral kaon mixing occurs through W-exchanges $\rightarrow (V - A)$

$$O_1^{\Delta s=2} = (\bar{s}(V-A)d)(\bar{s}(V-A)d)$$

Beyond the SM, other Dirac structure appear in the generic Hamiltonian

$$H^{\Delta s=2} = \sum_{i=1}^{5} C_i(\mu) O_i^{\Delta s=2}(\mu).$$

We express them in terms of Lorentz matrices Vector, Axial, Scalar, Pseudo-scalar, Tensor

$$(V - A) \times (V + A)$$
$$(S - P) \times (S + P)$$
$$(S - P) \times (S - P)$$
$$TT \times TT$$

On the lattice, we compute $\langle \bar{K}^0 | O_i^{\Delta s=2} | K^0 \rangle$

B_K SM kaon mixing - Results

FLAG 2013 quotes an error of 1.3% dominated by the perturbative matching Most recent determinations, in $\overline{\rm MS}$ at 3 GeV, ${\cal B}_{K}^{\overline{\rm MS}}(3{\rm GeV})$

Collaboration	N_f	Discretisation	Result
RBC-UKQCD	2 + 1	Domain-Wall	0.5293(17) _{stat+syst} (106) _{PT}
SWME	2 + 1	Staggered	$0.518(3)_{stat}(26)_{syst}$
ETM	2 + 1 + 1	Twisted Mass	$0.506(17)_{stat+syst}(3)_{PT}$

B_K SM kaon mixing - Results

FLAG 2013 quotes an error of 1.3% dominated by the perturbative matching Most recent determinations, in $\overline{\rm MS}$ at 3 GeV, $B_K^{\overline{\rm MS}}(3{\rm GeV})$

Collaboration	N_f	Discretisation	Result
RBC-UKQCD	2 + 1	Domain-Wall	0.5293(17) _{stat+syst} (106) _{PT}
SWME	2 + 1	Staggered	$0.518(3)_{stat}(26)_{syst}$
ETM	2 + 1 + 1	Twisted Mass	$0.506(17)_{stat+syst}(3)_{PT}$

Note that the conversion Lattice $\to \overline{MS}$ is only permformed at 1-loop in PT But 2-loop on the way see [Jäger & Kvedaraite @ Lattice 2018]

B_K SM kaon mixing - Results

BSM kaon mixing - Results

BSM kaon mixing - Results

BSM kaon mixing - Results

Other perspectives

■ QCD+QED: Huge effort (BMWc, ETMc, QCDSF, RBC-UKQCD, ...)
Applications to decay amplitudes, K_{I2}, K_{I3} ...
See e.g. [Sachrajda @ Lattice2018]
and to $K \to \pi\pi$, see [Christ & Feng @ Lattice2017]

Other perspectives

Improving the interface Lattice/Phenomenology

Schematically

experimental value
$$\sim \sum_{i} \underbrace{C_{i}(\mu)}_{PT} \times \underbrace{\langle O_{i}(\mu) \rangle}_{Lattice}$$

- \blacktriangle Matching Lattice/Pheno: Lattice $\overset{NPR}{\to}$ intermediate renorm. scheme $\overset{PT}{\to} \overline{\mathrm{MS}}$
- lacktriangle Matching to $N_f=3$ requires PT to be under control at $\mu\sim m_c$

Other perspectives

Improving the interface Lattice/Phenomenology

Schematically

experimental value
$$\sim \sum_{i} \underbrace{C_{i}(\mu)}_{PT} \times \underbrace{\langle O_{i}(\mu) \rangle}_{Lattice}$$

- $lack Matching Lattice/Pheno: Lattice \stackrel{NPR}{ o} intermediate renorm. scheme \stackrel{PT}{ o} \overline{\rm MS}$
- lacktriangle Matching to $N_f=3$ requires PT to be under control at $\mu\sim m_c$

Several improvement in progress

- \blacktriangle Higher order in PT, see Jäger & Kvedaraite @ Lattice 2018 for B_K
- ▲ Better(?) NPR schemes, [Cahill, NG, Gorbahn, Gracey, Rakow, ...]
- ▲ Non-perturbative computation of the Wilson coefficient [Bruno @ Lattice 2017]
- ▲ Renormalisation in position space [Tomi @ Lattice 2018]
- **A** ...

Conclusions & Outlook

Lattice community is very active in the Kaon area

- Some observables are known with very good precisions and provide important checks of the SM and conatraints on BSM theories (ex: V_{us}
 - ▲ Dynamical fermions $N_f = 2, 2 + 1, 2 + 1 + 1$ flavours
 - ▲ Physical quark masses, several lattice spacings, large volume etc.
 - ▲ Several discretisation, including chiral fermions
 - ▲ Huge effort to incorporate QED effects
- New quantities, non-standard
 - A New Last 5-8 years have seen tremendous progress in $K \to \pi\pi$ decays and $K \bar{K}$ mixing
 - A Progress toward long-distance contribution to $K \to \pi \nu \bar{\nu}$
- Improving the connection Lattice / Phenomenology

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Mattia Bruno Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christoph Lehner Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amariit Soni

UC Boulder

Oliver Witzel

Columbia University

Ziyuan Bai Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Evan Wickenden Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Guido Cossu Luigi Del Debbio Tadeusz Janowski Richard Kenway Julia Kettle Fionn O'haigan Brian Pendleton Antonin Portelli Tobias Tsang Azusa Yamaguchi

KEK

Julien Frison

University of Liverpool

Nicolas Garron

MIT

David Murphy
Peking University

Xu Feng

University of Southampton

Jonathan Flynn Vera Guelpers James Harrison Andreas Juettner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

York University (Toronto)

Renwick Hudspith

Backup

Definitions of ε and ε'

$$\varepsilon = \frac{A[K_L \to (\pi\pi)_0]}{A[K_S \to (\pi\pi)_0]}$$

$$\varepsilon' = \frac{1}{\sqrt{2}} \left(\frac{A[K_L \to (\pi\pi)_2] - \varepsilon \times A[K_S \to (\pi\pi)_2]}{A[K_S \to (\pi\pi)_0]} \right)$$

Definitions of ε and ε'

$$\varepsilon = \frac{A[K_L \to (\pi\pi)_0]}{A[K_S \to (\pi\pi)_0]}$$

$$\varepsilon' = \frac{1}{\sqrt{2}} \left(\frac{A[K_L \to (\pi\pi)_2] - \varepsilon \times A[K_S \to (\pi\pi)_2]}{A[K_S \to (\pi\pi)_0]} \right)$$

Or in terms of ε'/ε

$$\frac{\varepsilon'}{\varepsilon} = \frac{1}{\sqrt{2}} \left(\frac{A[K_L \to (\pi\pi)_2]}{A[K_L \to (\pi\pi)_0]} - \frac{A[K_S \to (\pi\pi)_2]}{A[K_S \to (\pi\pi)_0]} \right)$$

Non Perturbative Renormalisation (NPR)

A few words on the renormalisation

First step: remove the divergences

Non-perturbative Renormalisation à la Rome-Southampton [Martinelli et al '95]

$$Q_i^{lat}(a)
ightarrow Q_i^{MOM}(\mu,a) = Z(\mu,a)_{ij} Q_j^{lat}(a)$$

and take the continuum limit

$$Q_i^{MOM}(\mu,0) = \lim_{a^2 \to 0} Q_i^{MOM}(\mu,a)$$

Second step: Matching to \overline{MS} , done in perturbation theory [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

$$Q_i^{MOM}(\mu,0) \rightarrow Q_i^{\overline{\rm MS}}(\mu) = (1 + r_1\alpha_S(\mu) + r_2\alpha_S(\mu)^2 + \ldots)_{ij}Q_j^{MOM}(\mu,0)$$

The Rome Southampon method [Martinelli et al '95]

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$

Define

$$\Pi(x_2,x_1) = \langle \psi_2(x_2) O_{\Gamma}(0) \overline{\psi}_1(x_1) \rangle = \langle S_2(x_2,0) \Gamma S_1(0,x_1) \rangle$$

In Fourier space
$$S(p) = \sum_{x} S(x, 0)e^{ip.x}$$

$$\Pi(p_2,p_1)=\langle S_2(p_2)\Gamma S_1(p_1)^{\dagger})\rangle$$

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$

Define

$$\Pi(x_2,x_1) = \langle \psi_2(x_2) O_{\Gamma}(0) \overline{\psi}_1(x_1) \rangle = \langle S_2(x_2,0) \Gamma S_1(0,x_1) \rangle$$

In Fourier space $S(p) = \sum_{x} S(x,0)e^{ip.x}$

$$\Pi(p_2,p_1) = \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger} \rangle$$

Amputated Green function

$$\Lambda(p_2, p_1) = \langle S_2(p_2)^{-1} \rangle \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger} \rangle \rangle \langle (S_2(p_1)^{\dagger^{-1}}) \rangle$$

Consider a quark bilinear $O_{\Gamma} = \bar{\psi}_2 \Gamma \psi_1$

Define

$$\Pi(x_2, x_1) = \langle \psi_2(x_2) O_{\Gamma}(0) \bar{\psi}_1(x_1) \rangle = \langle S_2(x_2, 0) \Gamma S_1(0, x_1) \rangle$$

In Fourier space $S(p) = \sum_{x} S(x,0)e^{ip.x}$

$$\Pi(p_2, p_1) = \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger} \rangle$$

Amputated Green function

$$\Lambda(p_2, p_1) = \langle S_2(p_2)^{-1} \rangle \langle S_2(p_2) \Gamma S_1(p_1)^{\dagger} \rangle \rangle \langle (S_2(p_1)^{\dagger^{-1}}) \rangle$$

Rome Southampton original scheme (RI-MOM), $p_1 = p_2 = p$ and $\mu = \sqrt{p^2}$

$$Z(\mu, a) \times \lim_{m \to 0} \operatorname{Tr}(\Gamma \Lambda(p, p))_{\mu^2 = p^2} = \operatorname{Tree}$$

The Rome Southampon method [Martinelli et al '95]

Remarks

Can be generalised to the 4q-operators mixing case

The Rome Southampon method [Martinelli et al '95]

Remarks

- Can be generalised to the 4q-operators mixing case
- Non-perturbative off-shell and massless scheme(s)
- Requires gauge fixing (unlike Schrödinger Functional)

Remarks

- Can be generalised to the 4q-operators mixing case
- Non-perturbative off-shell and massless scheme(s)
- Requires gauge fixing (unlike Schrödinger Functional)

Note that the choice of projector and kinematics is not unique

■ In particular, SMOM scheme

$$p_1 \neq p_2 \text{ and } p_1^2 = p_2^2 = (p_1 - p_2)^2$$

■ Can use *q* as projector

Remarks

- Can be generalised to the 4q-operators mixing case
- Non-perturbative off-shell and massless scheme(s)
- Requires gauge fixing (unlike Schrödinger Functional)

Note that the choice of projector and kinematics is not unique

■ In particular, SMOM scheme

$$p_1 \neq p_2 \text{ and } p_1^2 = p_2^2 = (p_1 - p_2)^2$$

- Can use *q* as projector
- In principle the results should agree after conversion to $\overline{\rm MS}$, and extrapolation to the continuum limit

Renormalisation basis of the $\Delta F = 2$ operators

As for BSM neutral meson mixing one needs to renormalise 5 operators ,

$$(27,1) O_1^{\Delta S=2} = \gamma_{\mu} \times \gamma_{\mu} + \gamma_{\mu} \gamma_{5} \times \gamma_{\mu} \gamma_{5}$$

$$(8,8) \begin{cases} O_{2}^{\Delta s=2} = \gamma_{\mu} \times \gamma_{\mu} - \gamma_{\mu} \gamma_{5} \times \gamma_{\mu} \gamma_{5} \\ O_{3}^{\Delta s=2} = 1 \times 1 - \gamma_{5} \times \gamma_{5} \end{cases}$$

$$(6,\overline{6}) \begin{cases} O_{4}^{\Delta s=2} = 1 \times 1 + \gamma_{5} \times \gamma_{5} \\ O_{5}^{\Delta s=2} = \sigma_{\mu\nu} \times \sigma_{\mu\nu} \end{cases}$$

So the renormalisation matrix has the form

More details on NPR

- Setup is the similar to RBC-UKQCD
 In particular we follow [Arthur & Boyle '10]
- We implement momentum sources [Gockeler et al '98] to achieve high stat. accuracy
- Non exceptional kinematic with symmetric point $p_1^2 = p_2^2 = (p_2 p_1)^2$

to suppress IR contaminations [Sturm et al', RBC-UKQCD '09 '10]

Choice of SMOM scheme

Orientation of the momenta kept fixed

$$p_1 = \frac{2\pi}{L}[n, 0, n, 0]$$
 $p_2 = \frac{2\pi}{L}[0, n, n, 0]$

⇒ Well defined continuum limit

Choice of SMOM scheme

Orientation of the momenta kept fixed

$$p_1 = \frac{2\pi}{L}[n, 0, n, 0]$$
 $p_2 = \frac{2\pi}{L}[0, n, n, 0]$

- ⇒ Well defined continuum limit
- We chose γ_{μ} projectors, for example

$$P^{(\gamma_{\mu})} \leftrightarrow \gamma_{\mu} \times \gamma_{\mu} + \gamma_{\mu} \gamma_{5} \times \gamma_{\mu} \gamma_{5}$$

 \Rightarrow Z factor of a four quark operator O in the scheme $(\gamma_{\mu}, \gamma_{\mu})$ defined by

$$\lim_{m\to 0} \frac{Z_O^{(\gamma_\mu,\gamma_\mu)}}{Z_V^2} \frac{P^{(\gamma_\mu)}\left\{\Lambda_O\right\}}{\left(P^{(\gamma_\mu)}\left\{\Lambda_V\right\}\right)^2} \bigg|_{\mu^2=p^2} = \textit{Tree}$$

Note that this defines an off-shell massless scheme

Step-scaling

Rome-Southampton method requires a windows

$$\Lambda_{QCD}^2 \ll \mu^2 \ll (\pi/a)^2$$

■ And our lattice spacings are $a^{-1} \sim 2.2, 1.7, 1.3 \, GeV$

Step-scaling

Rome-Southampton method requires a windows

$$\Lambda_{QCD}^2 \ll \mu^2 \ll (\pi/a)^2$$

- And our lattice spacings are $a^{-1} \sim 2.2, 1.7, 1.3 \, GeV$
- we follow [Arthur & Boyle '10] and [Arthur, Boyle, NG, Kelly, Lytle '11] and define

$$\sigma(\mu_2, \mu_1) = \lim_{a^2 \to 0} \lim_{m \to 0} \left[(P\Lambda(\mu_2, a))^{-1} P\Lambda(\mu_1, a) \right] = \lim_{a^2 \to 0} Z(\mu_2, a) Z(\mu_1, a)^{-1}$$

Step-scaling

Rome-Southampton method requires a windows

$$\Lambda_{QCD}^2 \ll \mu^2 \ll (\pi/a)^2$$

- And our lattice spacings are $a^{-1} \sim 2.2, 1.7, 1.3 \, GeV$
- we follow [Arthur & Boyle '10] and [Arthur, Boyle, NG, Kelly, Lytle '11] and define

$$\sigma(\mu_2, \mu_1) = \lim_{a^2 \to 0} \lim_{m \to 0} \left[(P\Lambda(\mu_2, a))^{-1} P\Lambda(\mu_1, a) \right] = \lim_{a^2 \to 0} Z(\mu_2, a) Z(\mu_1, a)^{-1}$$

• We use 3 lattice spacings to compute $\sigma(2 \text{ GeV}, 1.5 \text{ GeV})$ but only the two finest to compute $\sigma(3 \text{ GeV}, 2 \text{ GeV})$ and get

$$Z(3 \text{ GeV}, a) = \sigma(3 \text{ GeV}, 2 \text{ GeV}) \sigma(2 \text{ GeV}, 1.5 \text{ GeV}) Z(1.5 \text{ GeV}, a)$$

- The Green functions might suffer from IR poles, $\sim 1/p^2$, or $\sim 1/m_\pi^2$ which can pollute the signal
- In principle these poles are suppressed at high μ but they appear to be quite important at $\mu \sim$ 3 GeV for some quantities which allow for pion exchanges
- The traditional way is to "subtract " these contamination by hand

- The Green functions might suffer from IR poles, $\sim 1/p^2$, or $\sim 1/m_\pi^2$ which can pollute the signal
- In principle these poles are suppressed at high μ but they appear to be quite important at $\mu \sim$ 3 GeV for some quantities which allow for pion exchanges
- The traditional way is to "subtract " these contamination by hand
- However these contaminations are highly suppressed in a SMOM scheme, with non-exceptional kinematics
- We argue that this pion pole subtractions is not-well under control and that schemes with exceptional kinematics should be discarded

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1 = p_2 \text{ and } \mu^2 \equiv p_1^2 = p_2^2$$

But this lead to "exceptional kinematics' and bad IR poles

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1=p_2$$
 and $\mu^2\equiv p_1^2=p_2^2$

But this lead to "exceptional kinematics" and bad IR poles

then RI-SMOM scheme

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

More MOM schemes

Renormalisation scale is μ , given by the choice of kinematics

Original RI-MOM scheme

$$p_1 = p_2 \text{ and } \mu^2 \equiv p_1^2 = p_2^2$$

But this lead to "exceptional kinematics' and bad IR poles

then RI-SMOM scheme

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2 = (p_1 - p_2)^2$

Much better IR behaviour [Sturm et al., Lehner and Sturm, Gorbahn and Jäger, Gracey, ...]

■ We are now studying a generalisation (see also [Bell and Gracey])

$$p_1 \neq p_2$$
 and $\mu^2 \equiv p_1^2 = p_2^2$, $(p_1 - p_2)^2 = \omega \mu^2$ where $\omega \in [0, 4]$

Note that
$$\omega = 0 \leftrightarrow RI - MOM$$
 and $\omega = 1 \leftrightarrow RI - SMOM$

In collaboration with [...,Cahill, Gorbahn, Gracey, Perlt , Rakow, ...]