

New physics with beam dump experiments

Mikael Chala (IPPP)

Based mainly on The SHiP physics case, 1504.04855;

The MATHUSLA Physics Case, 1806.07396.

Disclaimer

- LLPs (proper lifetime of order meter) everywhere, provided small coupling (from **effective operators, violating accidental symmetry**, etc.) and/or similar mass (**same multiplet of some** G). As usual as in the SM (e.g. neutron)
- I will focus only on classes of models solving the SM main problems

Disclaimer

- LLPs (proper lifetime of order meter) everywhere, provided small coupling (from **effective operators, violating accidental symmetry**, etc.) and/or similar mass (**same multiplet of some** G). As usual as in the SM (e.g. neutron)
- I will focus only on classes of models solving the SM main problems

The Standard Model is very strong, but it cannot explain all observations

Planck scale

Guideline for models predicting LLPs

- Hierarchy problem (SUSY and composite Higgs models)
- Neutrino masses
- Dark matter
- The Standard Model itself (as an effective field theory)

- We do not how SUSY is broken. Gauge-mediated SUSY breaking predicts a spectrum very different from the one assumed in most LHC searches
- Limits on stop mass (fine-tuning) can be very weak

- We do not how SUSY is broken. Gauge-mediated SUSY breaking predicts a spectrum very different from the one assumed in most LHC searches
- Limits on stop mass (fine-tuning) can be very weak

- We do not how SUSY is broken. Gauge-mediated SUSY breaking predicts a spectrum very different from the one assumed in most LHC searches
- Limits on stop mass (fine-tuning) can be very weak

- **R-parity is not fundamental**. Other ways of avoiding proton decay include baryon parity, lepton parity, etc; see *Dreiner 9707435*. None of them preferred by GUT or string theory
- LHC limits on RPV stop masses are as weak as 300 GeV; see [1710.07171]

Competitive/complementary to LHC

- In CHMs the hierarchy problem is solved because the Higgs is composite
- In short, they are a high-energy copy of QCD

- In CHMs the hierarchy problem is solved because the Higgs is composite
- In short, they are a high-energy copy of QCD

- Most choices of G/H (even if H contains the SM gauge group), do not produce pNGBs with the Higgs quantum numbers
- With the exception of SO(5)/SO(4) (which cannot be UV completed), **most** models include extra scalars (in particular singlets)

- SU(7)/SU(6)xU(1) is the smallest coset containing SU(5) (for gauge coupling unification) as well as the Higgs and S (dark matter); f > 10 TeV
- It gives 12 pNGBS, (T, H, S) forming a 5 of SU(5). T is the lightest colour state. Due to residual symmetries, it can only decay through dimension 6 ops.

$$T \to t^c b^c SS$$

[1409.7391]
$$c\tau = 100 \text{ m} \left(\frac{1}{c_3^T}\right)^2 \left(\frac{8}{g_\rho}\right)^3 \left(\frac{3 \text{ TeV}}{m_T}\right)^5 \left(\frac{f}{200 \text{ TeV}}\right)^4 \frac{1}{J(m_t, m_S)}$$

- SU(7)/SU(6)xU(1) is the smallest coset containing SU(5) (for gauge coupling unification) as well as the Higgs and S (dark matter); f > 10 TeV
- It gives 12 pNGBS, (T, H, S) forming a 5 of SU(5). T is the lightest colour state. Due to residual symmetries, it can only decay through dimension 6 ops.

"New physics in kaon and beam dump experiments", Birmingham, December 3 2018

- The minimal CHM that can be UV completed in four dimensions is SO(6)/SO(5). The scalar sector it provides is H+S (pseudoscalar). **S** is therefore an **ALP**
- If lifetime too large, S decays would flood the neutron-proton bath with SM particles, modifying n/p

It triggers the decay of S. It is equivalent to a mixing angle of $\gamma v/f (\lesssim 10^{-6})$

It keeps S in equilibrium in the early universe

$$L_{H,S} \sim \frac{iy_{\psi}\gamma}{f} S\overline{\phi_L}H\psi_R - \frac{\lambda_{HS}}{2} S^2 |H|^2$$

- The minimal CHM that can be UV completed in four dimensions is SO(6)/SO(5). The scalar sector it provides is H+S
- If lifetime too large, S decays would flood the neutron-proton bath with SM particles, modifying n/p

"New physics in kaon and beam dump experiments", Birmingham, December 3 2018

Neutrino masses

- The non-vanishing neutrino masses constitute the only experimental signature of new particle physics. Accommodated by the Weinberg operator, $\overline{l_L}H^2l_L$
- CP-violating interactions of the mediator can trigger lepton asymmetry, that can eventually be transformed into baryon asymmetry via sphalerons

 $\frac{\langle H \rangle \ \langle H \rangle}{\nu} \frac{\langle H \rangle}{\nu} \frac{\langle H \rangle}{\nu} \frac{10^{-6}}{\sqrt{\frac{2}{N}}} \frac{10^{-6}}{10^{-8}} \frac{10^{-8}}{\sqrt{\frac{2}{N}}} \frac{10^{-8}}{\sqrt{\frac{2}{N}}} \frac{10^{-8}}{\sqrt{\frac{2}{N}}} \frac{10^{-8}}{\sqrt{\frac{2}{N}}} \frac{10^{-9}}{\sqrt{\frac{2}{N}}} \frac{$

Neutrino masses

- The non-vanishing neutrino masses constitute the only experimental signature of new particle physics. Accommodated by the Weinberg operator, $$\overline{l_L}H^2l_L$$
- CP-violating interactions of the mediator can trigger lepton asymmetry, that can eventually be transformed into baryon asymmetry via sphalerons

Neutrino masses

- The non-vanishing neutrino masses constitute the only experimental signature of new particle physics. Accommodated by the Weinberg operator, $\overline{l_L}H^2l_L$
- CP-violating interactions of the mediator can trigger lepton asymmetry, that can eventually be transformed into baryon asymmetry via sphalerons

Reach at SHiP

Dark matter

- Composite (strongly interacting QCD like) dark matter can predict its stability
- It can explain galactic structure anomalies potentially related to large dark matter self interactions. It can explain small interaction with nuclei. It is often connected to the gauge hierarchy problem

$$\Gamma \sim \frac{\alpha_D \alpha \epsilon^2}{18\pi} \frac{m_D^5}{m_V^4}$$

- All relevant degrees of freedom and symmetries are known (assume SM-like)
- Mass gap between EW and new physics scales
- Keep up to dimension six operators

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\alpha^{(5)}}{\Lambda} \mathcal{O}^{(5)} + \sum_{i} \frac{\alpha_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \cdots$$

In black, those generated at tree level by new physics in the scalar sector

		Operator	Notation	Operator	Notation
	∞	$\left(\phi^\dagger\phi\right)\Box\left(\phi^\dagger\phi\right)$	$\mathcal{O}_{\phi\square}$	$\frac{1}{3} \left(\phi^\dagger \phi \right)^3$	\mathcal{O}_ϕ
	SVF		$\mathcal{O}_{\phi l}^{(1)}$ $\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\dagger}\sigma_{a}iD_{\mu}\phi\right)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L}\right)$	$\mathcal{O}_{\phi l}^{(3)}$
		$ (\phi^{\dagger}iD_{\mu}\phi) (\overline{q_{L}}\gamma^{\mu}q_{L}) $ $ (\phi^{\dagger}iD_{\mu}\phi) (\overline{u_{R}}\gamma^{\mu}u_{R}) $ $ (\phi^{T}i\sigma_{2}iD_{\mu}\phi) (\overline{u_{R}}\gamma^{\mu}d_{R}) $	$ \mathcal{O}_{\phi l}^{(1)} \\ \mathcal{O}_{\phi e}^{(1)} \\ \mathcal{O}_{\phi q}^{(1)} \\ \mathcal{O}_{\phi u}^{(1)} \\ \mathcal{O}_{\phi ud}$	$ \begin{pmatrix} \phi^{\dagger} \sigma_{a} i D_{\mu} \phi \end{pmatrix} \left(\overline{q_{L}} \gamma^{\mu} \sigma_{a} q_{L} \right) $ $ \left(\phi^{\dagger} i D_{\mu} \phi \right) \left(\overline{d_{R}} \gamma^{\mu} d_{R} \right) $	$\mathcal{O}_{\phi q}^{(3)} \ \mathcal{O}_{\phi d}^{(1)}$
•	STF	$ \begin{array}{c} \left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\phiB_{\mu\nu} \\ \left(\overline{q_L}\sigma^{\mu\nu}u_R\right)\tilde{\phi}B_{\mu\nu} \\ \left(\overline{q_L}\sigma^{\mu\nu}d_R\right)\phiB_{\mu\nu} \\ \left(\overline{q_L}\sigma^{\mu\nu}T_Au_R\right)\tilde{\phi}G_{\mu\nu}^A \end{array} $	\mathcal{O}_{eB} \mathcal{O}_{uB} \mathcal{O}_{dB} \mathcal{O}_{uG}	$\begin{array}{c} \left(\overline{l_L}\sigma^{\mu\nu}e_R\right)\sigma^a\phiW^a_{\mu\nu}\\ \left(\overline{q_L}\sigma^{\mu\nu}u_R\right)\sigma^a\tilde{\phi}W^a_{\mu\nu}\\ \left(\overline{q_L}\sigma^{\mu\nu}d_R\right)\sigma^a\phiW^a_{\mu\nu}\\ \left(\overline{q_L}\sigma^{\mu\nu}T_Ad_R\right)\phiG^A_{\mu\nu} \end{array}$	\mathcal{O}_{eW} \mathcal{O}_{uW} \mathcal{O}_{dW} \mathcal{O}_{dG}
-	$_{ m SF}$	$egin{pmatrix} \left(\phi^\dagger\phi ight)\left(\overline{l_L}\phie_R ight) \ \left(\phi^\dagger\phi ight)\left(\overline{q_L} ilde{\phi}u_R ight) \end{pmatrix}$	$\mathcal{O}_{e\phi} \ \mathcal{O}_{u\phi}$	$\left(\phi^\dagger\phi ight)\left(\overline{q_L}\phid_R ight)$	$\mathcal{O}_{d\phi}$
٠	Oblique		$egin{aligned} \mathcal{O}_{\phi D} \ \mathcal{O}_{\phi B} \ \mathcal{O}_{\phi W} \ \mathcal{O}_{WB} \ \mathcal{O}_{\phi G} \end{aligned}$	$\phi^\dagger\phi\ \widetilde{B}_{\mu u}B^{\mu u}$ $\phi^\dagger\phi\ \widetilde{W}^a_{\mu u}W^a\ ^{\mu u}$ $\phi^\dagger\sigma_a\phi\ \widetilde{W}^a_{\mu u}B^{\mu u}$ $\phi^\dagger\phi\ \widetilde{G}^A_{\mu u}G^{A\ \mu u}$	$egin{array}{c} \mathcal{O}_{\phi\widetilde{B}} \ \mathcal{O}_{\phi\widetilde{W}} \ \mathcal{O}_{\widetilde{W}B} \ \mathcal{O}_{\phi\widetilde{G}} \end{array}$
	Gauge	$\varepsilon_{abc} W^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho}$ $f_{ABC} G^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho}$	\mathcal{O}_W \mathcal{O}_G	$\varepsilon_{abc} \widetilde{W}_{\mu}^{a \nu} W_{\nu}^{b \rho} W_{\rho}^{c \mu}$ $f_{ABC} \widetilde{G}_{\mu}^{A \nu} G_{\nu}^{B \rho} G_{\rho}^{C \mu}$	$\mathcal{O}_{\widetilde{W}}$ $\mathcal{O}_{\widetilde{G}}$

In black, those generated at tree level by new physics in the scalar sector

	Operator	Notation	Operator	Notation
TTTT	$\frac{\frac{1}{2} \left(\overline{l_L} \gamma_{\mu} l_L\right) \left(\overline{l_L} \gamma^{\mu} l_L\right)}{\frac{1}{2} \left(\overline{q_L} \gamma_{\mu} q_L\right) \left(\overline{q_L} \gamma^{\mu} q_L\right)}$ $\left(\overline{l_L} \gamma_{\mu} l_L\right) \left(\overline{q_L} \gamma^{\mu} q_L\right)$	$\mathcal{O}_{ll}^{(1)} \ \mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{lq}^{(1)}$	$\frac{\frac{1}{2} \left(\overline{q_L} \gamma_{\mu} T_A q_L \right) \left(\overline{q_L} \gamma^{\mu} T_A q_L \right)}{\left(\overline{l_L} \gamma_{\mu} \sigma_a l_L \right) \left(\overline{q_L} \gamma^{\mu} \sigma_a q_L \right)}$	$\mathcal{O}_{qq}^{(8)} \ \mathcal{O}_{lq}^{(3)}$
RRRR	$\begin{array}{l} \frac{1}{2} \left(\overline{e_R} \gamma_\mu e_R \right) \left(\overline{e_R} \gamma^\mu e_R \right) \\ \frac{1}{2} \left(\overline{u_R} \gamma_\mu u_R \right) \left(\overline{u_R} \gamma^\mu u_R \right) \\ \left(\overline{u_R} \gamma_\mu u_R \right) \left(\overline{d_R} \gamma^\mu d_R \right) \\ \left(\overline{e_R} \gamma_\mu e_R \right) \left(\overline{u_R} \gamma^\mu u_R \right) \end{array}$	$egin{array}{l} \mathcal{O}_{ee} & & & & & & & & & & & & & & & & & & $	$\begin{array}{c} \frac{1}{2} \left(\overline{d_R} \gamma_\mu d_R \right) \left(\overline{d_R} \gamma^\mu d_R \right) \\ \left(\overline{u_R} \gamma_\mu T_A u_R \right) \left(\overline{d_R} \gamma^\mu T_A d_R \right) \\ \left(\overline{e_R} \gamma_\mu e_R \right) \left(\overline{d_R} \gamma^\mu d_R \right) \end{array}$	$egin{array}{c} \mathcal{O}_{dd}^{(1)} \ \mathcal{O}_{ud}^{(8)} \ \mathcal{O}_{ed} \end{array}$
LLRR & LRRL	$\begin{array}{l} \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right) \\ \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{u_R}\gamma^{\mu}u_R\right) \\ \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{u_R}\gamma^{\mu}u_R\right) \\ \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{d_R}\gamma^{\mu}d_R\right) \\ \left(\overline{l_L}e_R\right)\left(\overline{d_R}q_L\right) \end{array}$	$egin{array}{l} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qd}^{(1)} \ \mathcal{O}_{ledq} \end{array}$	$ \begin{array}{c} \left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right) \\ \left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{d_R}\gamma^{\mu}d_R\right) \\ \left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{u_R}\gamma^{\mu}T_Au_R\right) \\ \left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{d_R}\gamma^{\mu}T_Ad_R\right) \end{array} $	$egin{array}{c} \mathcal{O}_{qe} \ \mathcal{O}_{ld} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qd}^{(8)} \end{array}$
LRLR	$egin{aligned} \left(\overline{q_L}u_R ight)i\sigma_2\left(\overline{q_L}d_R ight)^{\mathrm{T}} \ \left(\overline{l_L}e_R ight)i\sigma_2\left(\overline{q_L}u_R ight)^{\mathrm{T}} \end{aligned}$	$\mathcal{O}_{qud}^{(1)} \ \mathcal{O}_{lequ}$	$\frac{\left(\overline{q_L}T_Au_R\right)i\sigma_2\left(\overline{q_L}T_Ad_R\right)^{\mathrm{T}}}{\left(\overline{l_L}u_R\right)i\sigma_2\left(\overline{q_L}e_R\right)^{\mathrm{T}}}$	$\mathcal{O}_{qud}^{(8)} \ \mathcal{O}_{luqe}$
$\mathcal{B} \& \mathcal{L}$	$\epsilon_{ABC}(\overline{l_L}i\sigma_2q_L^c{}^A)(\overline{d_R^B}u_R^c{}^C)$ $\epsilon_{ABC}(\overline{l_L}i\sigma_2q_L^c{}^A)(\overline{q_L^B}i\sigma_2q_L^c{}^C)$ $\epsilon_{ABC}(\overline{l_L}\sigma_ai\sigma_2q_L^c{}^A)(\overline{q_L^B}\sigma_ai\sigma_2q_L^c{}^C)$	$egin{array}{l} \mathcal{O}_{lqdu} \ \mathcal{O}_{lqqq}^{(1)} \ \mathcal{O}_{lqqq}^{(3)} \end{array}$	$\epsilon_{ABC}(\overline{q_L^A}i\sigma_2q_L^c{}^B)(\overline{e_R}u_R^c{}^C)$ $\epsilon_{ABC}(\overline{u_R^A}d_R^c{}^B)(\overline{e_R}u_R^c{}^C)$	\mathcal{O}_{qqeu} \mathcal{O}_{udeu}

In black, those generated at tree level by new physics in the scalar sector

- New physics in leptons more likely in the tau sector. Sensitivity to other (e.g. top) operators also possible due to RGEs
- Lepton flavour violation (order 1e-10 in BR) strongly motivated by the recent B anomalies
- Enormous tau production rate in SPS beam from Ds to tau neutrino

Current limits on tau to three muons

Belle
$$2.1 \times 10^{-8}$$
 [PLB 687 (2010) 139]

BaBar
$$3.3 \times 10^{-8}$$
 [PLB 687 (2010) 139]

LHCb
$$4.6 \times 10^{-8}$$
 [PLB 687 (2010) 139]

Conclusions

- Long-lived particles appear in the best motivated new physics models, including: SUSY, CHMs, neutrino models and models of dark matter
- MATHUSLA and ShiP can overcome the reach of LHC searches, particularly in: GMSB and RPV (NLSP mass above TeV vs few hundred GeV); NMCHMs (f scale up to 1000 TeV vs no more than 1 TeV); see-saw mixing angle in the tau sector (totally unconstrained at the LHC)
- TauFV can test better the SMEFT, in particular region strongly motivated by current flavour anomalies!