Nuclear structure studies at VECC using INGA

G. Mukherjee
Variable Energy Cyclotron Centre, Kolkata

gopal@vecc.gov.in

International Conference on Recent Issues in Nuclear and Particle Physics (RINP2)
Visva Bharati, Santiniketan. February 3 - 5, 2019
Plan of the Talk

Introduction

Beams and detection system for gamma ray spectroscopy at VECC: VENUS and INGA setup

Physics issues addressed in the recent INGA campaign

Transition from chiral to MR band in nuclei

Summary
Introduction

Shells and Shapes in Nuclei

$R(\theta,\phi) = R_{ave} \left[1 + \beta Y_{20}(\theta,\phi) \right]$

β is “deformation parameter” given by

$$\beta = \frac{4}{3\sqrt{5}} \frac{\Delta R}{R_{ave}}$$

$\Delta R = a - b$

$\beta > 0$ prolate ; $\beta < 0$ oblate

β_2: amount of deformation
γ: Nature of deformation

$\gamma = 0^o \rightarrow$ Prolate
$\gamma = -60^o \rightarrow$ Oblate

- Evolution of shape and shell structure as a function of E^*, J and N/Z
- Coupling of odd-particle with the collective excitations of the core
- Exotic excitations
Particle-hole excitations in high-j orbitals near the closed shells

Chirality: Triaxial shape

- Pair of nearly degenerate band structure
- Same configuration
- Same or very similar moment of inertia

Magnetic Rotation: Near Spherical shape

- Band-like structure with strong M1 transitions
- No or very weak E2 transitions
- B(M1) rate decreases with J
Specification of the VECC ion beams

Light-ion beams
- Proton: 7 – 13 MeV
- Deuteron: 15 – 20 MeV
- Alpha: 28 – 60 MeV

Heavy-ion beams
- Beam species: 14N, 16O, 20Ne,..., 40Ar, etc
- Energy: 7 – 10 MeV/A

The high-energy alpha beams, higher energy of heavy-ion beams, the beams of inert gases are unique and complementary to the other accelerators in the country.

Recent campaigns with alpha beams to study nuclear structure physics using γ-ray spectroscopy
Advantages of light ion beams for gamma ray spectroscopy

- Selective channels are only populated at a particular energy
- Cross section $\sim 1000 - 1500$ mb
 Good production yield, statistics within reasonable beam time
- Minimum energy loss of beam within target
 Thick target can be used for production of a single channel
- Minimum overlap with the neighbouring channels
 Selectivity and Clean spectroscopy
- Feeding to non-yrast states, not populated by heavy ion reaction
 Horizontal spectroscopy
 Complimentary to heavy ion induced reactions
Facilities for Nuclear Structure Studies at VECC

VENUS: VECC array for Nuclear Spectroscopy

INGA: Indian National Gamma Array
VENUS: VECC array for Nuclear Spectroscopy

- 6 CS Clover HPGe (now 8)
- Horizontal plane configuration
- Flexible angles
- Can be used for both online and offline experiments
- VME based DAQ
- A few experiments have been performed using α and p beams.
Geant 4 simulation of the VENUS Array

VENUS: VECC array for NUclear Spectroscopy: 6 CS clover HPGe detectors

Single crystal HPGe

Single Clover HPGe detector

Efficiency

Addback factor

Yrast and non-yrast spectroscopy of 199Tl using α-induced reactions

Soumik Bhattacharya1,2,4, S. Bhattacharyya1,2,4, R. Banik1,2, S. Das Gupta3, G. Mukherjee1,2, A. Dhal1, S. S. Alam1,2, Md. A. Asgar1,2,4, T. Roy1,2, A. Saha1,2, S. Nandi1,2, T. Bhattacharjee1,2, A. Choudhury1, Debasis Mondal1,2, S. Mukhopadhyay1, P. Mukhopadhyay1, S. Pal1, Deepak Pandit1, I. Shaik1, and S. R. Banerjee1

1Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064, India
2Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400094, India
3Victoria Institution (College), Kolkata 700009, India

(Received 28 March 2018; revised manuscript received 21 August 2018; published 11 October 2018)

The excited states of the 199Tl nucleus have been studied by using the light ion induced fusion evaporation reaction 197Au(α, 2n)199Tl at 30 MeV of beam energy by γ-ray spectroscopic methods. VECC Array for Nuclear Spectroscopy (VENUS) has been used to detect the prompt γ rays. Level scheme of 199Tl has been significantly

[Diagram of the level scheme of 199Tl]
Gated Spectra and Angular distribution in 199Tl from VENUS data

Soumik Bhattacharya et al. PRC 96, 044311 (2018)
VENUS appears in the cover page of Association of Asia Pacific Physical Society Bulletin.

Vol. 28 | Number 2 | APRIL 2018 Issue
Indian National Gamma Array (INGA) @ VECC

Two Campaigns at VECC with INGA:

2004-06:
- up to 10 detectors (clover and LEPS)
- heavy-ion induced reactions

2017-18:
- up to 10 detectors (clover and LEPS)
- light-ion \((\alpha, p)\) induced reactions
INGA setup @ VECC (2017-18)

In two phases:

1st Phase
- 7 Clovers + 1 LEPS
- Digital Data Acquisition
- 15 user experiments

2nd Phase
- 8 Clovers + 2 LEPS
- Digital Data Acquisition
- 7 user experiments
Electronics and Data Acquisition

- Digital DAQ from XIA
- Setup by UGC-DAE-CSR, Kolkata
- Preamplifier signal are directly plugged in
- No analog processing for BGO

- Analog NIM Electronics and VME DAQ
- Backup system from VECC
- 16-ch amplifiers for Clovers
- 13 bit high resolution VME ADC
Experiments performed in phase-I using INGA at VECC

Alpha : 30-40 MeV, Proton: 7-10 MeV

<table>
<thead>
<tr>
<th>No.</th>
<th>PI of the experiment</th>
<th>Institute</th>
<th>Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ajay Kumar Singh</td>
<td>IIT Kharagpur</td>
<td>Alpha</td>
</tr>
<tr>
<td>2.</td>
<td>Asimananda Goswami</td>
<td>SINP</td>
<td>Alpha</td>
</tr>
<tr>
<td>3.</td>
<td>S.S. Ghugre</td>
<td>UGC–DAE–CSR</td>
<td>Alpha</td>
</tr>
<tr>
<td>4.</td>
<td>Soumik Bhattacharya</td>
<td>VECC</td>
<td>Alpha</td>
</tr>
<tr>
<td>5.</td>
<td>Sarmishtta Bhattacharyya</td>
<td>VECC</td>
<td>Alpha</td>
</tr>
<tr>
<td>6.</td>
<td>Gopal Mukherjee</td>
<td>VECC</td>
<td>Alpha</td>
</tr>
<tr>
<td>7.</td>
<td>Haridas Pai</td>
<td>SINP</td>
<td>Alpha</td>
</tr>
<tr>
<td>8.</td>
<td>Sukhendu Sekhar Sarkar</td>
<td>IIEST, Shibpur</td>
<td>Alpha</td>
</tr>
<tr>
<td>9.</td>
<td>Anagha Chakraborty</td>
<td>Visva Bharati</td>
<td>Alpha</td>
</tr>
<tr>
<td>10.</td>
<td>D.C. Biswas</td>
<td>BARC</td>
<td>Alpha</td>
</tr>
<tr>
<td>11.</td>
<td>Suresh Kumar</td>
<td>Delhi University</td>
<td>Alpha</td>
</tr>
<tr>
<td>12.</td>
<td>T. Bhattacharjee / D. Banerjee</td>
<td>VECC / RCD, BARC</td>
<td>Alpha</td>
</tr>
<tr>
<td>13.</td>
<td>Krishichayan</td>
<td>TUNL, Duke University</td>
<td>Alpha</td>
</tr>
<tr>
<td>14.</td>
<td>Maitreyee Saha Sarkar</td>
<td>SINP</td>
<td>Proton</td>
</tr>
<tr>
<td>15.</td>
<td>T. Bhattacharjee/ D. Banerjee</td>
<td>VECC / RCD, BARC</td>
<td>Proton</td>
</tr>
</tbody>
</table>
Experiments performed in phase-II using INGA at VECC

Alpha : 40-53 MeV + Heavy ion (\(^{20}\text{Ne}\)) (test)

<table>
<thead>
<tr>
<th>No.</th>
<th>PI of the experiment</th>
<th>Institute</th>
<th>Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Abhijit Bisoi</td>
<td>IIEST, Shibpur, West Bengal</td>
<td>Alpha</td>
</tr>
<tr>
<td>2.</td>
<td>Pradip Datta & Biswarup Das</td>
<td>Ananda Mohan College, Kolkata</td>
<td>Alpha</td>
</tr>
<tr>
<td>3.</td>
<td>Rudrajyoti Palit</td>
<td>TIFR, Mumbai</td>
<td>Alpha</td>
</tr>
<tr>
<td>4.</td>
<td>Riitwika Chakrabarti</td>
<td>Mumbai University, Mumbai</td>
<td>Alpha</td>
</tr>
<tr>
<td>5.</td>
<td>Somsundar Mukhopadhyay</td>
<td>BARC, Mumbai</td>
<td>Alpha</td>
</tr>
<tr>
<td>6.</td>
<td>Sujit Tandel</td>
<td>CEBS, Mumbai</td>
<td>Alpha</td>
</tr>
<tr>
<td>7.</td>
<td>Shinjinee Das Gupta</td>
<td>Victoria College, Kolkata</td>
<td>Alpha</td>
</tr>
</tbody>
</table>

Total 22 user experiments performed

2 runs with proton beam

20 runs are with alpha beam
Local INGA Group (VECC, SINP, UGC-DAE-CSIR)
Support of a strong team of students who worked together!
Regions of nuclear chart covered with INGA@VECC

- Nuclei near the line of stability
- Some of them close to the spherical shell closures (proton / neutron)
- Most of them are in the heavier part of the nuclear chart
- Only possible to excite using light ion beams.
Main physics issues addressed in various experiments

- Spectroscopy of heavy nuclei in A~ 200 region near Z=82 shell closure
- Search for octupole deformation in different mass regions
- Spectroscopy of neutron-rich nuclei through fission
- Yrast and non-yrast states near Z=50 shell closure
- Mixed symmetry states
- Transition moment measurement
- Vibrational states
- Shape coexistence
- Multi-quasiparticle structures
Some important recent Results in nuclei around $Z = 82$
Proton and neutron orbitals in A ~ 190 - 200 region

\((Z \sim 82 \text{ and } 104 < N < 126)\)

- **Proton particle and neutron hole**
- This favours the occurrence of different exotic modes of nuclear excitation
- Different shape driving orbitals and onset of collectivity

- For neutron number \(N < 114\), \(i_{13/2}\) orbital opens up for neutron hole
- **High-j** proton and neutron orbitals give rise to high-spin isomers
Our Major findings in nuclei around Z = 82

- Several MR bands with large multi-q\-p configuration at high excitation in ^{198}Bi [PRC\textbf{90}, 064314 (2014)]

- Systematic study of the $\pi h_{9/2}$ bands in odd-A Tl (Z = 81) isotopes reveals the persistence of rotational band (deformation) of $\pi h_{9/2}$ configuration up to N = 120. [PRC\textbf{88}, 044328 (2013); ibid. 064302; PRC\textbf{98}, 044311 (2018)]

- Identification of band crossing in odd-odd $^{194,196,200}\text{Tl}$ [PRC\textbf{85}, 064313 (2012), PRC\textbf{95}, 014301 (2017)]

- Evidence of MR band in ^{194}Tl [PRC\textbf{85}, 064313 (2012)]

- No evidence for Chiral bands in odd-odd ^{196}Tl [to be published]

- Evidence for Multiple Chiral Doublet (MχD) bands in odd-A ^{195}Tl [PLB\textbf{782} (2018) 768]
Structural evolution in odd-Z Bi (Z = 83) nuclei

- Spherical s.p excited states to deformed rotor through small deformation at high excitation
- The MR band in 197Bi is the only MR band reported in Bi isotopes.

G.K. Mabala et al., EPJ A25 49 (2005)

197Bi

(Z = 83, N = 114)

MR band

193Bi

(Z = 83, N = 110)

P. Nieminen et al., PRC 69, 064326 (2004)

209Bi

(Z = 83, N = 126)

Spherical s.p excited states to deformed rotor through small deformation at high excitation

The MR band in 197Bi is the only MR band reported in Bi isotopes.
Onset of deformation in 195Bi ($Z = 83, N = 112$)

H. Pai et al., PRC 85, 064317(2012)

T. Roy et al., EPJ A51, 153 (2015)

Larger shape driving effect of $i_{13/2}$ orbital than $h_{9/2}$ orbital

TRS Calculations with WS potential
Results on Tl nuclei

H. Pai et al., C 85, 064313 (2012)

- Deformed rotational band structure based on $\pi h_{9/2} \otimes v_{i13/2}$ configuration
- Band crossing and MR band identified.
- Chiral doublet band identified by Masiteng et al.

P.L. Masiteng et al., PLB 719, 83 (2013)
Results on 196Tl

- A large level scheme with band crossing identified
- Similar behaviour of all the $\pi h_{9/2} \otimes \nu i_{13/2}$ bands in all odd-odd Tl isotopes.
- Changes observed after the band crossing
- No chiral doublet band observed

Results on ^{195}Tl

Observation of multiple doubly degenerate bands in ^{195}Tl

Observation of $\ell\chi\delta$ bands for the first time in $A = 190$ region.

T. Roy et al., PLB 782, 768 (2018)
Comparison of the doublet bands (b2-B2a and B4-B4a) in 195Tl with the Chiral bands in 194,198Tl

- First observation of Multiple Chiral Doublet (MχD) in A = 190 region.
- First observation of doublet bands with configuration involving as large as 5 quasi-particles.
- $\Delta\Delta E_{av} \sim 25$ keV ($\Delta e_{max} = 59$ keV) for B4-B4a represents one of the best degenerate bands.
Total Routhian Surface (TRS) Calculations: Shape of ^{195}Tl

For different configuration

The Oblate shape for 1-qp configuration changes to a triaxial shape with $\gamma \sim +39^\circ$ for 3-qp configuration.

For 5-qp configuration, a stable triaxial minimum with $\gamma \sim +31^\circ$ appears.

More number of neutrons in $i_{13/2}$ orbital gives stable triaxiality.

The proton particle in $h_{9/2}$ and neutron holes in $i_{13/2}$ coupled with the triaxial core provides the chiral geometry in ^{195}Tl.

Recent results on 197Tl

Multiple MR bands in 197Tl ($N = 116$) at same no. of qp as in chiral bands in 195Tl ($N = 114$)

→ A transition from aplanar (Chiral) to Planar (MR) configuration around $N \sim 114$

S. Nandi: Poster
Some other structural changes around $N \sim 114$

De-excitation energies of $31/2^+$ isomer in Au isotopes

$$E_x(I) = \frac{\hbar^2}{2I} I(I+1)$$
Similar transition for the $\pi h_{11/2} \otimes \nu h_{11/2}$ bands in Cs ($Z = 55$) isotopes

Chiral bands

($N = 73$)

($N = 75$)

($N = 77$)

MR band

134Cs ($Z = 55$, $N = 79$)

A different band structure in 134Cs.

TAC Calculations

TAC Calculations (S. Kumar) reproduces the data in 134Cs and confirms the MR nature of the band ➞ In sharp contrast to 132Cs.

Suggests an aplanar configuration for $N < 79$ to a planar one for $N \geq 79$

H. Pai et al. PRC 84, 041301(R) (2011)

TRS Calculations

Change in shape from triaxial to γ-soft and towards lower β_2 as neutron number increases.
Summary

- The light-ion induced reaction has certain advantages for gamma ray spectroscopic studies.

- VENUS and INGA are the two setups with Clover detectors at VECC for gamma ray spectroscopy studies.

- Several experiments have been performed by different users from all over the country using the INGA setup at VECC with Digital DAQ.

- A transition from Chiral to Magnetic Rotation behaviour has been observed in Tl isotopes from the recent experiments at VECC. This seems to be related with the closure of neutron $i_{13/2}$ orbital. The result is similar to that observed for the Cs isotopes in $A \sim 130$ region.

- More experimental and theoretical investigations are required.

Thank You