Signatures of synchrotron radiation from the annihilation of Dark Matter at the Galactic Centre

DEBASISH MAJUMDAR SAHA INSTITUTE OF NUCLEAR PHYSICS, KOLKATA RINP2, VISVA-BHARATI, SANTINIKETAN, 04/02/2019.

- Dark Matter indirect detection by via synchrotron radiation.
- Dark Matter can be trapped by massive astrophysical objects such as Galactic Centre.
- When accumulated in considerable numbers the Dark Matter can undergo the process of self annihilation producing SM fermion-anti fermion pairs.
- If e⁺e⁻ pairs are produced as annihilation product they, under the influence of the magnetic field at the GC region will produce synchrotron radiation.
- Such radiation may be detected as indirect signature of Dark Matter as radio signals at the upcoming radio telescopes such as SKA.

Dark Matter Candidate (The Model)

- SM is extended by two new extra fields:- a fermion and a pseudoscalar.
- Both are singlets under the SM gauge group.
- The Lagrangian for such a case is given as

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm DM} + \mathcal{L}_{\phi} + \mathcal{L}_{\rm int}$$

where,

$$\mathcal{L}_{\rm DM} = \bar{\chi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \chi \qquad \mathcal{L}_{\phi} = \frac{1}{2} \left(\partial_{\mu} \phi \right)^2 - \frac{1}{2} m_0^2 \phi^2 -$$

$$\mathcal{L}_{\rm int} = -\frac{g_1}{\Lambda} \left(H^{\dagger} H \right) \bar{\chi} \chi - ig\phi \bar{\chi} \gamma^5 \chi - \lambda_1 \phi^2 H^{\dagger} H - V_H$$

$$V_H = \mu_H^2 H^{\dagger} H + \lambda_H \left(H^{\dagger} H \right)^2$$

The scalar potential can thus be written as

$$V = \mu_H^2 H^{\dagger} H + \lambda_H \left(H^{\dagger} H \right)^2 + \frac{1}{2} m_0^2 \phi^2 + \frac{\lambda}{24} \phi^4 + \lambda_1 H^{\dagger} H \phi^2$$

After spontaneous symmetry breaking we have

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_H + \tilde{H} \end{pmatrix}, \phi = v_\phi + S,$$

$$V = \frac{\mu_H^2}{2} \left(v_H + \tilde{H} \right)^2 + \frac{\lambda_H}{4} \left(v_H + \tilde{H} \right)^4 + \frac{m_0^2}{2} \left(v_\phi + S \right)^2 + \frac{\lambda}{24} \left(v_\phi + S \right)^4 + \frac{\lambda_1}{2} \left(v_H + \tilde{H} \right)^2 \left(v_\phi + S \right)^2.$$

From the minimization condition

$$\frac{\partial V}{\partial \tilde{H}}\Big|_{\tilde{H}=S=0} = \frac{\partial V}{\partial S}\Big|_{\tilde{H}=S=0} = 0$$
$$m_0^2 = -\frac{\lambda}{6}v_\phi^2 - \lambda_1 v_H^2$$
$$\mu_H^2 = -\lambda_H v_H^2 - \lambda_1 v_\phi^2$$

H and S mixes and the mass matrix is

$$\mathcal{M} = \begin{pmatrix} m_{\tilde{H}}^2 & m_{\tilde{H},S}^2 \\ m_{\tilde{H},S}^2 & m_S^2 \end{pmatrix}$$

 $= \begin{pmatrix} \frac{\partial^2 V}{\partial \tilde{H}^2} & \frac{\partial^2 V}{\partial S \partial \tilde{H}} \\ \\ \frac{\partial^2 V}{\partial S \partial \tilde{H}} & \frac{\partial^2 V}{\partial S^2} \end{pmatrix}$

$$= \begin{pmatrix} 2\lambda_H v_H^2 & 2\lambda_1 v_\phi v_H \\ 2\lambda_1 v_\phi v_H & \frac{1}{3}\lambda v_\phi^2 \end{pmatrix}$$

In the diagonal basis

$$\begin{pmatrix} h \\ \rho \end{pmatrix} = U \begin{pmatrix} \tilde{H} \\ S \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \tilde{H} \\ S \end{pmatrix}$$

 $h = S \sin \theta + \tilde{H} \cos \theta, \ \rho = S \cos \theta - \tilde{H} \sin \theta$

Constraining the parameter space

The theoretical constraints

► Vacuum Stabilty $\lambda > 0, \ \lambda_H > 0, \ \lambda_H > 6\lambda_1^2.$

 λ

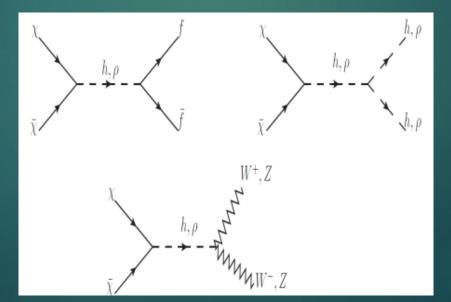
Perturbativity

$$\lambda_1, \lambda_H < 4\pi.$$

- Experimental Constraints
 - ► PLANCK constraint on Relic Density $0.1172 \le \Omega_{\rm DM} h^2 \le 0.1226$,
 - Collider Constraints
 - Direct Detection Bounds

Relic Density

The Boltzmann equation is given as


$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left[n_{\chi}^2 - \left(n_{\chi}^{\rm eq} \right)^2 \right]$$

This equation after suitable transformation gives

$$\frac{1}{Y_0} = \frac{1}{Y_F} + \left(\frac{45G}{\pi}\right)^{-\frac{1}{2}} \int_{T_0}^{T_F} g_*^{1/2} \langle \sigma \mathbf{v} \rangle dT$$

Finally the relic density is

$$\Omega_{\rm DM} h^2 = 2.755 \times 10^8 \left(\frac{m_{\chi}}{\rm GeV}\right) Y_0$$

Collider Constraints

The signal strength of SM like Higgs boson h is

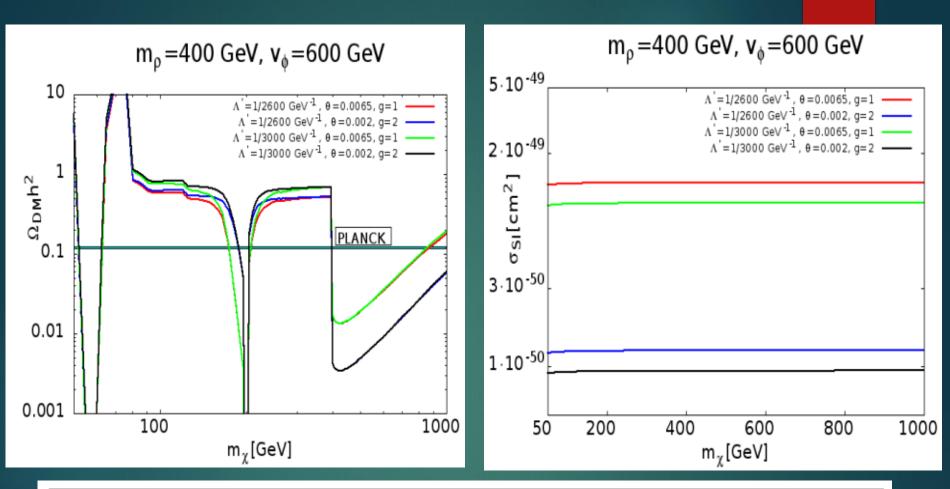
$$R_1 = \frac{\sigma \left(pp \to h\right)}{\sigma^{\text{SM}} \left(pp \to h\right)} \frac{\text{Br}\left(h \to xx\right)}{\text{Br}^{\text{SM}} \left(h \to xx\right)}$$

$$\operatorname{Br}^{\mathrm{SM}}(h \to xx) = \frac{\Gamma^{\mathrm{SM}}(h \to xx)}{\Gamma^{\mathrm{SM}}}, \ \operatorname{Br}(h \to xx) = \frac{\Gamma(h \to xx)}{\Gamma}$$

$$\frac{\sigma \left(pp \to h\right)}{\sigma^{\rm SM} \left(pp \to h\right)} = \cos^2 \theta \qquad \qquad R_1 = \cos^4 \theta \frac{\Gamma^{\rm SM}}{\Gamma}$$

$$\Gamma = \cos^2 \theta \, \Gamma^{\rm SM} + \Gamma^{\rm inv}$$

$$\Gamma\left(h \to \chi\bar{\chi}\right) = \frac{g^2}{8\pi} \sin^2\theta \left(m_h^2 - 4m_\chi^2\right)^{1/2} + \frac{\Lambda'^2 \cos^2\theta v_H^2}{8\pi m_h^2} \left(m_h^2 - 4m_\chi^2\right)^{3/2}$$


Direct Detection

Scattering of Dark Matter of a detector nucleus. At the quark level

$$\mathcal{L}_{\text{eff}} = \alpha_q \bar{\chi} \gamma^5 \chi \bar{q} q + \alpha'_q \bar{\chi} \chi \bar{q} q$$

$$\sigma_{\rm SI} \simeq \frac{v_H^2 {\Lambda'}^2}{4\pi} m_r^2 \sin^2 \theta \cos^2 \theta \left(\frac{1}{m_h^2} - \frac{1}{m_\rho^2}\right)^2 \lambda_\rho^2$$

$$\lambda_p = \frac{m_p}{v_H} \left[\sum_q f_q + \frac{2}{9} \left(1 - \sum_q f_q \right) \right] \simeq 1.3 \times 10^{-3}$$

BP	m_{χ}	v_{ϕ}	Λ'	g	$m_{ ho}$	θ	$\Omega_{\rm DM} h^2$	$\sigma_{ m SI}$
	in GeV	in GeV	in GeV^{-1}		in GeV			cm^2
1	101.5	600	$\frac{1}{2600}$	1	200	0.0065	0.1187	5.9258×10^{-50}
2	430	600	$\frac{1}{2600}$	1	200	0.0065	0.1183	6.0151×10^{-50}
3	565	600	$\frac{1}{2600}$	2	600	0.002	0.1195	1.4050×10^{-50}
4	307	600	$\frac{1}{2600}$	2	600	0.002	0.1187	1.4008×10^{-50}

Synchrotron Radiation Calculation

Solve the standard time dependent diffusion equation

$$K(E)\nabla^2 n_e(E,\mathbf{r}) + \frac{\partial}{\partial E} \left[b(E,\mathbf{r}) n_e(E,\mathbf{r}) \right] + Q(E,\mathbf{r}) = 0$$

$$b(E, \mathbf{r}) = b_{\text{synch}}(E, \mathbf{r}) + b_{\text{IC}}(E, \mathbf{r}) + b_{\text{brem}}(E, \mathbf{r})$$

$$b_{\rm synch}(E,\mathbf{r}) = \frac{dE}{dt}\Big|_{\rm synch} = \frac{4}{3}\sigma_T c U_{\rm mag}\left(\mathbf{r}\right)\gamma^2\beta^2 = 3.4\times10^{-17} {\rm GeVs^{-1}} \left(\frac{{\rm E}}{{\rm GeV}}\right)^2 \left(\frac{{\rm B}}{3\mu{\rm G}}\right)^2$$

$$b_{\rm IC}(E,\mathbf{r}) = \frac{dE}{dt}\Big|_{\rm IC} = \frac{2}{9} \frac{e^4 U_{\rm rad}(\mathbf{r}) E^2}{\pi \epsilon_0^2 m_e^2 c^7} = 10^{-16} {\rm GeV s^{-1}} \left(\frac{{\rm E}}{{\rm GeV}}\right)^2 \left(\frac{{\rm U}_{\rm rad}(\mathbf{r})}{{\rm eV cm^{-3}}}\right)$$

$$b_{\rm brem}(E,\mathbf{r}) = \frac{dE}{dt}\Big|_{\rm brem} = 3 \times 10^{-15} {\rm GeV s^{-1}} \left(\frac{{\rm E}}{{\rm GeV}}\right) \left(\frac{{\rm n_H}}{3 {\rm \, cm^{-3}}}\right)$$

$$Q(E, \mathbf{r}) = \frac{1}{2} \left(\frac{\rho_{\chi}(\mathbf{r})}{m_{\chi}} \right)^2 \sum_{f} \langle \sigma v \rangle_f \frac{dN_{e^{\pm}}^f}{dE}$$

$$n_e(E, \mathbf{r}) = \frac{\int_E^{m_\chi} dE' Q\left(E', \mathbf{r}\right)}{b(E, \mathbf{r})}$$

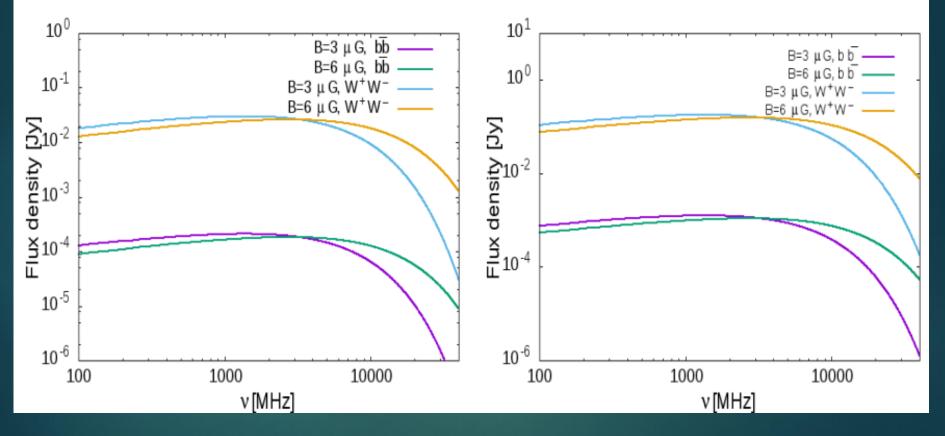
$$L_{\nu}(\mathbf{r}) = \int dE \mathcal{P}(\nu, E) n_e(E, \mathbf{r})$$

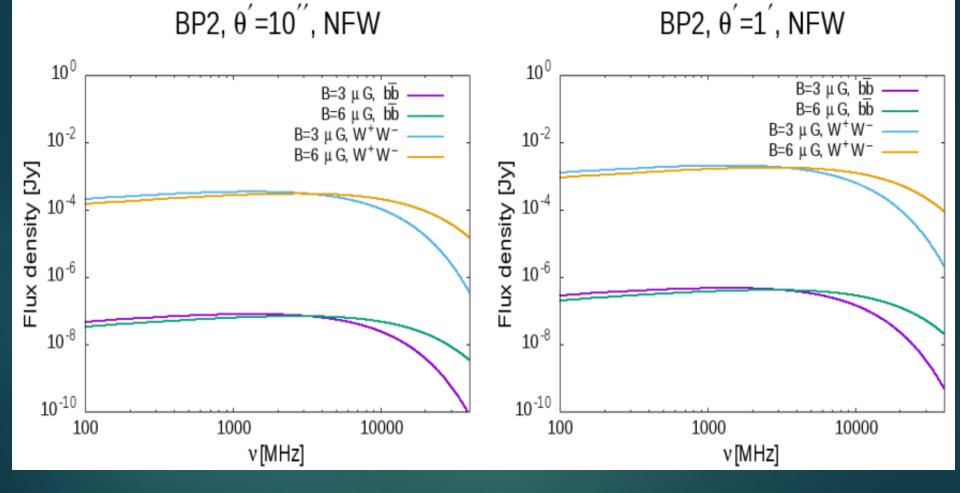
Synchrotron Radiation flux density is given by

$$F_{\nu} = \frac{1}{4\pi} \int d\Omega \int_{\text{l.o.s}} dl L_{\nu}(\mathbf{r})$$

The Detectors

GMRT/uGMRT


Frequency Ranges 130-260 MHz, 250-500 MHz, 550-900 MHz, 1000-1450 MHz (Most Sensitive between 250-1000 MHz).


- Flux density of the order of mJy (1 Jy=10⁻²⁶ W/Hz/m²/sr)
- Opening Angle 10'-1"
- SKA
 - Frequency Range 70 MHz-10GHz
 - Flux Density Limit:-mJy to µJy
- Jodrell Bank
 - Opening Angle 4"
 - ► Frequency 408 MHz
 - Upper Bound on Radio Flux 15 mJy

Results

BP1, $\theta'=10''$, NFW

BP1, $\theta'=1'$, NFW

$B=3 \mu G$, NFW density profile.								
BP	m_{χ}	ν	θ'	observational limit		calculated flux density		
				GMRT	SKA	$\chi \bar{\chi} \rightarrow b\bar{b}$	$\chi \overline{\chi} \rightarrow$ W^+W^-	
	in GeV	in MHz		in Jy	in Jy	in Jy	in Jy	
1		325		0.04×10^{-3}		1.7275×10^{-4}	2.4706×10^{-2}	
		610	10''	0.02×10^{-3}		1.9549×10^{-4}	2.7958×10^{-2}	
	101.5	1400		0.03×10^{-3}	$10^{-6} - 10^{-3}$	2.1021×10^{-4}	3.0064×10^{-2}	
		325		0.04×10^{-3}		1.0359×10^{-3}	1.4815×10^{-1}	
		610	1′	0.02×10^{-3}		1.1723×10^{-3}	1.6765×10^{-1}	
		1400		0.03×10^{-3}		1.2606×10^{-3}	1.8028×10^{-1}	
2		325		0.04×10^{-3}		6.5159×10^{-8}	2.8442×10^{-4}	
		610	10''	0.02×10^{-3}		7.3736×10^{-8}	3.2186×10^{-4}	
	430	1400		0.03×10^{-3}	$10^{-6} - 10^{-3}$	7.9291×10^{-8}	3.4611×10^{-4}	
		325		0.04×10^{-3}		3.9073×10^{-7}	1.7056×10^{-3}	
		610	1	0.02×10^{-3}		4.4217×10^{-7}	1.9301×10^{-3}	
		1400		0.03×10^{-3}		4.7548×10^{-7}	2.0755×10^{-3}	
3		325		0.04×10^{-3}		2.3737×10^{-8}	1.7479×10^{-4}	
		610	10''	0.02×10^{-3}		2.6862×10^{-8}	1.9780×10^{-4}	
	565	14000		.03×10 ⁻³	$10^{-6} - 10^{-3}$	2.8885×10^{-8}	2.1270×10^{-4}	
		325		0.04×10^{-3}		1.4234×10^{-7}	1.0482×10^{-3}	
		610	1′	0.02×10^{-3}		1.6108×10^{-7}	1.1861×10^{-3}	
		1400		0.03×10^{-3}		1.7322×10^{-7}	1.2755×10^{-3}	
4		325		0.04×10^{-3}		8.3656×10^{-7}	1.7722×10^{-3}	
		610	10″	0.02×10^{-3}		9.4668×10^{-7}	2.0055×10^{-3}	
	307	1400			10-6-10-3	1.0180×10^{-6}	2.1566×10^{-3}	
		325		0.04×10^{-3}		5.0165×10^{-6}	1.0627×10^{-2}	
		610	1′	0.02×10^{-3}		5.6769×10^{-6}	1.2026×10^{-2}	
		1400		0.03×10^{-3}		6.1045×10^{-6}	1.2932×10^{-2}	

$B=3 \mu G$, NFW density profile.							
BP	m_{χ}	ν	θ'	observational limit	calculated flux density		
				Jodrell Bank	$\chi \bar{\chi} \rightarrow$	$\chi \bar{\chi} \rightarrow$	
					$b\overline{b}$	W^+W^-	
	in GeV	in MHz		in Jy	in Jy	in Jy	
1	101.5				5.3718×10^{-5}	7.6826×10^{-3}	
2	430				2.0262×10^{-8}	8.8450×10^{-4}	
3	565	408	$4^{\prime\prime}$	50×10^{-3}	7.3814×10^{-9}	5.4353×10^{-5}	
4	307				2.6014×10^{-7}	5.5109×10^{-4}	

THANK YOU