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Neutrino properties
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The dog that did not bark



Radioactive decays

Types: , , and  decays

• -decay: the parent nucleus, X,  becomes a 

different nucleus, Y, by the emission of an -particle. 

XN
A  YN-4

A-2 +    (2n)(2p)      E = MX - MY

• -decay:  Inside the nucleus  n  p + e- + e

XN
A  YN

A+1 + e- + e E  MX – MY

(No neutrino would give equality!)

•  -decay:  Nucleus de-excites by emitting high-energy -ray 

(XN
A )* XN

A +  E = MX* - MX
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Our focus



Units

• Velocity of light. Choose units such that  c = 1

• E = m c2  Mass and energy in same units

• High energy  GeV (Giga-electron-volts) = 109 eV

• Nuclear binding energy  MeV

• Mass of proton  1GeV

• Quantum mechanics: Angular momentum  ħ units

• Spin of electron ħ/2

• We often choose units such that ħ = 1
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Neutrino properties

• Very light 

• Uncharged 

• Hardly interact

• Produced e.g., in beta decay

Ensures conservation of energy

Another important example +  µ+ + µ

• Can pass from one end of the earth 

to another without interaction 

• Harmless, Very difficult to detect                          

Wolfgang Pauli
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Neutrino properties

• Neutrino interactions: 

No strong interaction, no electromagnetic 
interaction.

Only weak interactions (2 types: CC and NC)

Cross section  (e +e  e +e ) ~ 10
-43

cm
2

c.f.  ~ 10
-27

cm
2

(em), ~10
-23 

cm
2

(strong) 

• Sterile  : No weak interactions



First neutrino detection (1953)

:
 Detector:  200 litres of water  

 Inverse beta decay   + p   e+ + n

 40kg of  dissolved Cd Cl4

 e+ promptly annihilates: 2

 n  is slowed down  by Cd

 Then absorbed by Cd

 Delayed photon from  Cd  -decay

 Coincidences observed.

Need an intense neutrino source

One option: Test of  nuclear  device  (X)

Chosen: Nuclear power plant   (√) 

Copious source of antineutrinos
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Neutrinos detected!

Fred Reines (Nobel  1995)



Types of  Neutrinos 

Pion decay: +  µ+ +  (?)

• All the particles are made to hit a 13.5m steel wall

• ± µ± are absorbed in the wall. 

• Only neutrinos remain.

• 5ton spark chamber detector

• 1” Aluminium ⅜” gap (Ne gas)

µ  µ- e  e- : No e seen

• +  µ+ + µ

↛ µ+ + e (Not allowed)

Concept of man-made neutrino beams (1962)

Brookhaven Accelerator:  15 GeV energy proton beam

p + target material  many pi mesons + other stuff

± are unstable particles. They decay!  
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Leon Lederman,

Melvin Schwartz,

Jack Steinberger

µ  e

Nobel 1988



Neutrino properties (contd.)

Three types: e , µ,  are known. 

A e is produced from an initial electron (e). Similarly, µ,  are 

associated with  ,  leptons.

Many properties discovered 

in the past two decades  
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Elementary particles

Source: http://electron9.phys.utk.edu/phys250/modules/module6/images/simplemodel2.gif

Higgs Boson!

Neutrinos

Fermions

Bosons
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Standard Model

• The Standard Model describes strong and electroweak 

interactions.

• Mediated by gluons, W-boson, Z-boson, and photon.

• Fermions: Left- and right-handed quarks, left- and right-

handed charged leptons, left-handed neutrino. No R!

Parity violation!

• Masses of W, Z , quarks and leptons via Higgs 

mechanism.

• No R in SM  Neutrino is massless. Chosen for 

consistency with information of that era.

• (B-L) is a symmetry of the Standard Model
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Neutrino interactions 

CC: Charged current 

e + n  e + p  

NC: Neutral current

x + p  x + p

x + n  x + n  (x =e, , )

Did you see it?

No, Nothing!

Then it was a 

neutrino

W± exchange

Z exchange
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Neutrino Sources

Experimentally observed:

• Solar neutrinos (Fusion reactions)

• Atmospheric neutrinos (pion decay)

• Accelerator neutrinos (pion decay)

• Nuclear Reactor antineutrinos (Fission reactions)

Future:

• Long baseline expts such as DUNE, H2K

50 billion neutrinos/sec from the natural radioactivity of the earth

E ~ 0.1 ~ 20 MeV; Flux 

~1012 /cm2/s

RINP2 (Visva Bharati)February 03, 2019



Solar neutrinos

• Sun generates heat and light through fusion reactions

4p  4He + 2 e+ + 2 e + 27 MeV    (i)

• Just like sunlight, solar neutrinos are reaching us (day & night!)

• Reaction (i) does not take place in one go. Rather, it is the 
consequence of a cycle of reactions, e.g.

p + p  2H + e+ + e     pp neutrinos

The e energy spectra from these reactions are well-known.

• Robust prediction of  the number of solar neutrinos reaching the earth 
as a function of energy is possible. These have been detected by 
several expts. But … 
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Reactor neutrinos

• Nuclear power stations run on fission reactions.

• A heavy nucleus, such as Uranium or Plutonium, breaks 
into lighter nuclei and neutrons and other particles.

• A large flux of electron antineutrinos are produced.

• Energy in the few MeV range.

• Excellent source for neutrino experiments.

France, China, Korea and other countries 
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Daya Bay, China 



Neutrino beams

• High energy (few 1000 MeV) neutrinos are produced at 
accelerators. A high energy proton beam hits a target and 
produces many particles (among them  )   

• Pions decay to produce neutrinos  (+  µ+ + µ )

• Neutrinos from CERN or Fermilab (USA)
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Atmospheric neutrinos

Neutrinos are produced in the atmosphere

from cosmic ray pion and kaon decays

e.g. (
-
 µ

-
+ µ),  (µ

-
 e

-
+ e + µ)

and the charge conjugate processes

Typical energy ~ 1 GeV

Expectation: R =(# µ+ µ)/(# e+ e) ≈ 2

SuperK: Robs/Rmc =0.635±0.035±0.083

(sub-GeV)

= 0.604±0.065±0.065

(multi-GeV)

No. of µ depends on zenith angle (up-down asymmetry)

No such effect for e (1997)

up

down

detector

Earth atmosphere

Masatoshi Koshiba

Nobel: 2002 
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T. Kajita



Solar neutrino results

Expt            Obsvd/Predn    Eth (MeV)             Type      

Homestake      0.335 ± 0.029       0.8            Radiochemical

(from 1968)                                         e + 
37

Cl 
37

Ar + e
_

(CC)

GNO, SAGE,   0.584 ± 0.039       0.233        Radiochemical

Gallex e + 
71

Ga 
71

Ge + e
_ 
(CC)

K, SuperK        0.459 ± 0.017        5.0           Water Cerenkov

(1989)                                                     e + e  e + e (CC + NC)

SNO CC         0.347 ± 0.027        6.75            Cerenkov 

e + d  p + p + e
_ 

(CC)

Ray Davis

Nobel: 2002
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Solar neutrino results

Expt            Obsvd/Predn    Eth (MeV)             Type      

Homestake      0.335 ± 0.029       0.8            Radiochemical

(from 1968)                                         e + 
37

Cl 
37

Ar + e
_

(CC)

GNO, SAGE,   0.584 ± 0.039       0.233        Radiochemical

Gallex e + 
71

Ga 
71

Ge + e
_ 
(CC)

K, SuperK        0.459 ± 0.017        5.0           Water Cerenkov

(1989)                                                     e + e  e + e (CC + NC)

SNO CC         0.347 ± 0.027        6.75            Cerenkov 

e + d  p + p + e
_ 

(CC)

SNO NC      1.008 ± 0.123            2.2              + d  n + p +  (NC)
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A.B. McDonald



Neutrino oscillations
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Neutrino oscillations

• A quantum mechanical phenomenon relying on the 
superposition principle.

• In the oscillation of a pendulum, the bob alternately 
reaches the left and right end-points of the trajectory.

• During travel, a e becomes a µ and then back again to a 
e. This  oscillation process continues.

Prob(eµ, L) = 4 c2 s2 sin2(L/ λ)

The oscillation wavelength (and hence probability!) 

depends on the neutrino energy.

Maximal mixing

 = /4
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c = cos

s = sin



Neutrino oscillations (contd.)

How does this help?

• Solar neutrino detectors look for e. Some (Cl, Ga and  SNO CC) are 
totally insensitive to µ, τ. SK has a smaller sensitivity (about 1/6) to 
other types. Only SNO NC is equally sensitive to all.

If some e have oscillated to a µ when they reach the detector then they 
will not be seen (except in SNO NC). Count will be less.

• Atmospheric e, µ are detected through the e-, µ- they produce. At their 
higher energies, the e  hardly oscillates, while the µ oscillates to τ, 
which do not produce µ-. This reduces the measured ratio R. Also, the 
zenith angle dependence seen for µ is explained.

• Other experiments (at nuclear reactors and using neutrino beams) have 
seen clear signals for neutrino oscillation. 
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Some Quantum Mechanics

Stationary states:  H |Ψn> = En |Ψn> 

Time evolution:      |Ψn(t)> = exp(-iEnt) |Ψn(0)>      (only a phase)

General state (t=0): |Ψ(0)> = ∑  an |Ψn(0)> 

General state (any t):  |Ψ(t)> = ∑  an exp(-iEnt) |Ψn(0)> 

Phase differences  ~ (Ei – Ej )t    physics consequences

Neutrino stationary states: |1>, |2>

(mass eigenstates)

Neutrino flavour eigenstates: |e>, |µ>

Mass ↔ Flavour states:           |e> =  |1> cosθ + |2> sinθ

|µ> =  -|1> sinθ + |2> cosθ
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Quantum Mechanics of neutrino 

oscillations (contd.)

|e> produced at  t = 0  |Ψ(0)> = |e> =  |1> cos θ + |2> sinθ

At a later time: |Ψ(t)> = |1> cos θ e-iE1t + |2> sinθ e-iE2t

Prob(eµ, L) = |< µ |Ψ(t)>|2 = 4 c2 s2 |e-iE1t - e-iE2t|2

Neutrinos are ultra-relativistic: p >> m  Ei = (p2 + mi
2)½ ≈  p + mi

2/2p

(E1 - E2)t = (m1
2 – m2

2)t /2p ≡ (∆/2p)t = ∆ L/2E 

Prob(eµ, L) = 4 c2 s2 sin2(L/ λ)      where 

Survival Prob. = Prob(ee, L) = 1 - Prob(eµ, L) 

λ = 4 E/ ∆
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More on  oscillations

• Essential ingredients: (i)  = m1
2

- m2
2  
 0,  (ii) sin   0.

• Matter effect:   Mass is a measure of inertia.                           
In a medium inertia (and hence mass) changes.                          
Neutrino mass and mixing affected by medium (MSW  effect)

• Solar neutrino problem:     = 6.07 x 10
-5

eV
2  

(ii) tan
2
 = 0.41                                                    

(Best fit -- MSW LMA)                    

e oscillates to another `active’ neutrino (SNO NC ≈ 1)

• Atmospheric neutrino anomaly:  = 3 x 10
-3

eV
2  

(ii) sin
2 

2 = 1
(Best fit)

µ oscillates to 
me= 5,00,000 eV
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Three neutrino mixing matrix

cos  sin 

-sin  cos 

Two flavour mixing:

U =

In reality there are three flavours (3 angles, one phase):

The phase  signals CP non-conservation

All three mixing angles must be non-zero for CP-violation

13 ~ 90 (2012) Daya Bay and RENO experiments
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Three neutrino mass ordering

Solar neutrinos: m2
2 – m1

2 > 0:

From atmospheric neutrinos,

only |m3
2 – m1

2 | is known

13 ≠ 0?

Normal mass ordering?

or                           Not known!

Inverted mass ordering?
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Open issues

• Standard model (SM) of particle physics has 

massless neutrinos. 

• Oscillations signal mass difference. What is the 

neutrino mass?

• What is the mass ordering? Is there CP-violation?

• Is the neutrino its own anti-particle   Majorana 

neutrino!

• New physics is needed if m0?. Many new ideas.
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India-based Neutrino Observatory

Pottipuram: 9057’N, 77016’E

(Bodi Hills)

Near TamilNadu-Kerala 

border

1km rock coverage

V.M. Datar
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Majorana Neutrino?

• Can the neutrino be its own anti-particle?  (  ≡ c ?)   

The photon is its own anti-particle. (Also 0)

• In such an event, lepton number is not conserved!

• A consequence  Neutrino-less double beta decay (02β process) 

P.B. Pal, V. Nanal, A. Shrivastava

• Normal double beta decay (22β) :  X  Y + 2 e
-
+ 2e

• Neutrino-less double beta decay (02β) : X  Y + 2 e
-

(<m>
2
)

• Look for peak in 2e
-
total energy

• Current limit <m>  <  0.2 eV.

RINP2 (Visva Bharati)February 03, 2019



Sterile neutrino?

Prob(e, L) = 4 c2 s2 sin2( L/ 4E)      

( L/ 4E) should not be too small nor too large

= m2
2 – m1

2 is fixed by the neutrino masses  This fixes the region of  (L/E) to 
which experiment should be sensitive.

Conversely observation of oscillations at a certain (L/E)  Indicative of a certain 

(msy2
2 – m1

2)

LSND Experiment (1995) used a  beam from + decay and observed oscillations. 

L = 30 m, 36 MeV  E  52.8 MeV For this (L/E)    1 -10 eV2

Is this result correct? 

MiniBooNE (2018) with L 0.5 km and  

200 MeV  E  1250 MeV get similar results      

Note (L/E) is similar.    4th sterile neutrino?

M.R. Janani
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Neutrino-Nucleus scattering (COHERENT Expt)

 This is not an oscillation phenomenon.

 Normally we consider neutrinos scattering off electrons or perhaps 

quarks.

 Neutrino-Nucleus elastic scattering (much like Dark Matter detection)

B. Mukhopadhyaya

 Here, neutrinos scattering coherently off nuclei. Scattering mediated by Z-
boson exchange. Energy must be low ( < 50 MeV) so that the wavelength is 
comparable to the nuclear size.

The cross section  N2, where N is the no. of neutrons in the nucleus

Pulsed beam (helps background estimation)

Small-sized detector (14.6 kg)

CsI scintillator, 

6.7 signal E ~ 16 – 53 MeV
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Fermion mass

• Fermions have spin! Left- and right-handed 
fermions: 

 = L+ R

• Fermion mass couples left to right: 

m   = m(R L + L R)

• Standard Model: There is no right-handed 
neutrino. 

• If there is only left-handed (or right-handed) 
component then m=0.
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How to get m 0?

• The mundane way is to add a R to the SM.

• This solves the problem but has no explanation of the 

smallness of m. 

• This is the major hurdle in neutrino model building. To 

explain the smallness, one always needs new physics 

associated with some heavy scale, M (See-saw!). For 

Majorana mass, lepton number violation is also needed.

• Generic form of see-saw: m = (const)/M

N Khan
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Simplest new physics

• Left-right symmetric model  R required by symmetry.

• Nature is parity violating. Left-right symmetry is broken at 

a high energy scale, MR.

• Neutrino mass matrix:                                     MR » m

• Two Majorana neutrinos: L (mass m), R (mass MR)

• See-saw mass formula: m = (m2)/MR.

• Pati-Salam model and other grand unified theories 

contain left-right symmetry.

• How to test for MR? 










RMm

m0
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Physics Nobel Prize 2015

For the discovery of neutrino oscillations which shows 

that neutrinos have mass
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Takaaki Kajita (Japan)

&

Arthur B. McDonald (Canada)
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Looking Ahead

• Mixing between three neutrinos

• CP-violation in lepton sector

• Majorana neutrinos

• Sterile neutrinos

• Long baseline experiments

• INO

• Neutrino mass matrix

• New physics: new interactions, symmetries, etc.

• Astroparticle physics: e.g. Supernova, Nucleosynthesis

A. Dighe
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