The Knowns and Unknowns of Neutrinos

RINP2
Visva-Bharati
February 03, 2019

Amitava Raychaudhuri
University of Calcutta
Neutrino properties

The dog that did not bark
Radioactive decays

Types: α, β, and γ decays

- **α-decay:** the parent nucleus, X, becomes a different nucleus, Y, by the emission of an α-particle.
 \[X_N^A \rightarrow Y_{N-4}^{A-2} + \alpha \quad \alpha \equiv (2n)(2p) \quad E_\alpha = M_X - M_Y \]

- **β^--decay:** Inside the nucleus
 \[n \rightarrow p + e^- + \bar{\nu}_e \]
 \[X_N^A \rightarrow Y_{N+1}^{A+1} + e^- + \bar{\nu}_e \quad E_\beta \neq M_X - M_Y \]
 (No neutrino would give equality!)

- **γ-decay:** Nucleus de-excites by emitting high-energy γ-ray
 \[(X_N^A)^* \rightarrow X_N^A + \gamma \quad E_\gamma = M_{X^*} - M_X \]
Units

- Velocity of light. Choose units such that $c = 1$
- $E = mc^2 \Rightarrow$ Mass and energy in same units

- High energy $\sim \text{GeV}$ (Giga-electron-volts) $= 10^9 \text{eV}$
- Nuclear binding energy $\sim \text{MeV}$
- Mass of proton $\sim 1\text{GeV}$

- Quantum mechanics: Angular momentum $\sim \hbar$ units
- Spin of electron $\hbar/2$
- We often choose units such that $\hbar = 1$
Neutrino properties

- Very light
- Uncharged
- Hardly interact

- Produced e.g., in beta decay
 Ensures conservation of energy
 Another important example $\pi^+ \rightarrow \mu^+ + \nu_\mu$

- Can pass from one end of the earth to another without interaction

- Harmless, Very difficult to detect
Neutrino properties

• Neutrino interactions:

No strong interaction, no electromagnetic interaction.

Only weak interactions (2 types: CC and NC)

Cross section $\Rightarrow \sigma \left(\nu_e + e \rightarrow \nu_e + e \right) \sim 10^{-43} \, \text{cm}^2$

c.f. $\sigma \sim 10^{-27} \, \text{cm}^2 \, (\text{em}), \sim 10^{-23} \, \text{cm}^2 \, (\text{strong})$

• Sterile ν: No weak interactions
First neutrino detection (1953)

- Detector: 200 litres of water
- Inverse beta decay $\bar{\nu} + p \rightarrow e^+ + n$
- 40kg of dissolved Cd Cl$_4$

- e^+ promptly annihilates: 2γ
- n is slowed down by Cd
- Then absorbed by Cd
- Delayed photon from Cd γ-decay
- Coincidences observed.

Need an intense neutrino source
One option: Test of nuclear device (X)
Chosen: Nuclear power plant (√)
Copious source of antineutrinos

Fred Reines (Nobel 1995)
Types of Neutrinos

Brookhaven Accelerator: 15 GeV energy proton beam
\(p + \) target material \(\rightarrow \) many pi mesons + other stuff
\(\pi^\pm \) are unstable particles. They decay!

Pion decay: \(\pi^+ \rightarrow \mu^+ + \nu (?) \)

- All the particles are made to hit a 13.5m steel wall
- \(\pi^\pm, \mu^\pm \) are absorbed in the wall.
- Only neutrinos remain.

- 5ton spark chamber detector
- 1” Aluminium \(\frac{3}{8}” \) gap (Ne gas)
\(\nu_\mu \rightarrow \mu^- \) \(\nu_e \rightarrow e^- : \) No \(e^\pm \) seen

- \(\pi^+ \rightarrow \mu^+ + \nu_\mu \)
\(\rightarrow \mu^+ + \nu_e \) (Not allowed)

Concept of man-made neutrino beams (1962)
Neutrino properties (contd.)

Three types: ν_e, ν_μ, ν_τ are known.
A ν_e is produced from an initial electron (e). Similarly, ν_μ, ν_τ are associated with μ, τ leptons.

Many properties discovered in the past two decades.
Elementary particles

Standard Model

- The Standard Model describes strong and electroweak interactions.
- Mediated by gluons, W-boson, Z-boson, and photon.
- Fermions: Left- and right-handed quarks, left- and right-handed charged leptons, left-handed neutrino. No ν_R! Parity violation!

- Masses of W, Z, quarks and leptons via Higgs mechanism.
- No ν_R in SM \Rightarrow Neutrino is massless. Chosen for consistency with information of that era.
- $(B-L)$ is a symmetry of the Standard Model
Neutrino interactions

CC: Charged current
\[\nu_e + n \rightarrow e + p \]

NC: Neutral current
\[\nu_x + p \rightarrow \nu_x + p \]
\[\nu_x + n \rightarrow \nu_x + n \quad (x = e, \mu, \tau) \]

W± exchange
Z exchange

Did you see it?
No, Nothing!
Then it was a neutrino
Neutrino Sources

50 billion neutrinos/sec from the natural radioactivity of the earth

Experimentally observed:
- Solar neutrinos (Fusion reactions)
- Atmospheric neutrinos (pion decay)
- Accelerator neutrinos (pion decay)
- Nuclear Reactor antineutrinos (Fission reactions)

Future:
- Long baseline expts such as DUNE, H2K

E ~ 0.1 ~ 20 MeV; Flux ~10^{12}/cm²/s
Solar neutrinos

- Sun generates heat and light through fusion reactions
 \[4p \rightarrow ^4\text{He} + 2\ e^+ + 2\ \nu_e + 27\ \text{MeV} \]

- Just like sunlight, solar neutrinos are reaching us (day & night!)

- Reaction (i) does not take place in one go. Rather, it is the consequence of a cycle of reactions, e.g.
 \[p + p \rightarrow ^2\text{H} + e^+ + \nu_e \leftarrow \text{pp neutrinos} \]
 The \(\nu_e \) energy spectra from these reactions are well-known.

- Robust prediction of the number of solar neutrinos reaching the earth as a function of energy is possible. These have been detected by several expts. But …

February 03, 2019
RINP2 (Visva Bharati)
Reactors neutrinos

- Nuclear power stations run on fission reactions.
- A heavy nucleus, such as Uranium or Plutonium, breaks into lighter nuclei and neutrons and other particles.
- A large flux of electron antineutrinos are produced.
- Energy in the few MeV range.
- Excellent source for neutrino experiments.

France, China, Korea and other countries

Daya Bay, China
Neutrino beams

- High energy (few 1000 MeV) neutrinos are produced at accelerators. A high energy proton beam hits a target and produces many particles (among them π^\pm).

- Pions decay to produce neutrinos ($\pi^+ \rightarrow \mu^+ + \nu_\mu$).

- Neutrinos from CERN or Fermilab (USA)
Neutrinos are produced in the atmosphere from cosmic ray pion and kaon decays e.g. \((\pi^- \rightarrow \mu^- + \bar{\nu}_\mu)\), \((\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu)\) and the charge conjugate processes

Typical energy \(\sim 1\) GeV

Expectation: \(R = (\# \nu_\mu + \bar{\nu}_\mu)/(\# \nu_e + \bar{\nu}_e) \approx 2\)

SuperK: \(R_{\text{obs}}/R_{\text{mc}} = 0.635 \pm 0.035 \pm 0.083\) (sub-GeV)
\[= 0.604 \pm 0.065 \pm 0.065\] (multi-GeV)

No. of \(\nu_\mu\) depends on zenith angle (up-down asymmetry)

No such effect for \(\nu_e\) (1997)
Solar neutrino results

<table>
<thead>
<tr>
<th>Expt</th>
<th>Obsvd/Predn</th>
<th>E_{th} (MeV)</th>
<th>Type</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestake</td>
<td>0.335 ± 0.029</td>
<td>0.8</td>
<td>Radiochemical</td>
<td>$\nu_e + ^{37}\text{Cl} \rightarrow ^{37}\text{Ar} + e^- \ (\text{CC})$</td>
</tr>
<tr>
<td>(from 1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNO, SAGE, Gallex</td>
<td>0.584 ± 0.039</td>
<td>0.233</td>
<td>Radiochemical</td>
<td>$\nu_e + ^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^- \ (\text{CC})$</td>
</tr>
<tr>
<td>K, SuperK</td>
<td>0.459 ± 0.017</td>
<td>5.0</td>
<td>Water Cerenkov</td>
<td>$\nu_e + e \rightarrow \nu_e + e \ (\text{CC} + \text{NC})$</td>
</tr>
<tr>
<td>(1989)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNO CC</td>
<td>0.347 ± 0.027</td>
<td>6.75</td>
<td>Cerenkov</td>
<td>$\nu_e + d \rightarrow p + p + e^- \ (\text{CC})$</td>
</tr>
</tbody>
</table>

-Ray Davis
Nobel: 2002
Solar neutrino results

<table>
<thead>
<tr>
<th>Expt</th>
<th>Obsvd/Predn</th>
<th>E_{th} (MeV)</th>
<th>Type</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homestake</td>
<td>0.335 ± 0.029</td>
<td>0.8</td>
<td>Radiochemical</td>
<td>$\nu_e + ^{37}\text{Cl} \rightarrow ^{37}\text{Ar} + e^-$ (CC)</td>
</tr>
<tr>
<td>(from 1968)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNO, SAGE, Gallex</td>
<td>0.584 ± 0.039</td>
<td>0.233</td>
<td>Radiochemical</td>
<td>$\nu_e + ^{71}\text{Ga} \rightarrow ^{71}\text{Ge} + e^-$ (CC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K, SuperK (1989)</td>
<td>0.459 ± 0.017</td>
<td>5.0</td>
<td>Water Cerenkov</td>
<td>$\nu_e + e \rightarrow \nu_e + e$ (CC + NC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNO CC</td>
<td>0.347 ± 0.027</td>
<td>6.75</td>
<td>Cerenkov</td>
<td>$\nu_e + d \rightarrow p + p + e^-$ (CC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNO NC</td>
<td>1.008 ± 0.123</td>
<td>2.2</td>
<td>$\nu + d \rightarrow n + p + \nu$ (NC)</td>
<td></td>
</tr>
</tbody>
</table>

A.B. McDonald

February 03, 2019

RINP2 (Visva Bharati)
Neutrino oscillations
Neutrino oscillations

- A quantum mechanical phenomenon relying on the superposition principle.
- In the oscillation of a pendulum, the bob alternately reaches the left and right end-points of the trajectory.
- During travel, a ν_e becomes a ν_μ and then back again to a ν_e. This oscillation process continues.

\[
\text{Prob}(\nu_e \rightarrow \nu_\mu, L) = 4 \ c^2 \ s^2 \ \sin^2(\pi L / \lambda)
\]

Maximal mixing

$\theta = \pi/4$

The oscillation wavelength (and hence probability!) depends on the neutrino energy.

$c = \cos \theta$

$s = \sin \theta$
Neutrino oscillations (contd.)

How does this help?

- Solar neutrino detectors look for ν_e. Some (Cl, Ga and SNO CC) are totally insensitive to ν_μ, ν_τ. SK has a smaller sensitivity (about 1/6) to other types. Only SNO NC is equally sensitive to all. If some ν_e have oscillated to a ν_μ when they reach the detector then they will not be seen (except in SNO NC). Count will be less.

- Atmospheric ν_e, ν_μ are detected through the e^-, μ^- they produce. At their higher energies, the ν_e hardly oscillates, while the ν_μ oscillates to ν_τ, which do not produce μ^-. This reduces the measured ratio R. Also, the zenith angle dependence seen for ν_μ is explained.

- Other experiments (at nuclear reactors and using neutrino beams) have seen clear signals for neutrino oscillation.
Some Quantum Mechanics

Stationary states: \(H |\Psi_n> = E_n |\Psi_n> \)

Time evolution: \(|\Psi_n(t)> = \exp(-iE_n t) |\Psi_n(0)> \) (only a phase)

General state (t=0): \(|\Psi(0)> = \sum a_n |\Psi_n(0)> \)
General state (any t): \(|\Psi(t)> = \sum a_n \exp(-iE_n t) |\Psi_n(0)> \)
Phase differences \(\sim (E_i - E_j) t \) \(\rightarrow \) physics consequences

Neutrino stationary states: \(|\nu_1>, |\nu_2> \)
(mass eigenstates)

Neutrino flavour eigenstates: \(|\nu_e>, |\nu_\mu> \)

Mass \(\leftrightarrow \) Flavour states:
\[
|\nu_e> = |\nu_1> \cos\theta + |\nu_2> \sin\theta \\
|\nu_\mu> = -|\nu_1> \sin\theta + |\nu_2> \cos\theta
\]
Quantum Mechanics of neutrino oscillations (contd.)

$|\nu_e\rangle$ produced at $t = 0 \rightarrow |\Psi(0)\rangle = |\nu_e\rangle = |\nu_1\rangle \cos \theta + |\nu_2\rangle \sin \theta$

At a later time: $|\Psi(t)\rangle = |\nu_1\rangle \cos \theta e^{-iE_1t} + |\nu_2\rangle \sin \theta e^{-iE_2t}$

$$\text{Prob}(\nu_e \rightarrow \nu_\mu, L) = |<\nu_\mu|\Psi(t)>|^2 = 4 \ c^2 \ s^2 \ |e^{-iE_1t} - e^{-iE_2t}|^2$$

Neutrinos are ultra-relativistic: $p >> m \Rightarrow E_i = (p^2 + m^2)^{1/2} \approx p + m^2/2p$

$$(E_1 - E_2)t = (m_1^2 - m_2^2)t / 2p \equiv (\Delta/2p)t = \Delta L/2E$$

$$\text{Prob}(\nu_e \rightarrow \nu_\mu, L) = 4 \ c^2 \ s^2 \ \sin^2(\pi L / \lambda) \quad \text{where} \quad \lambda = 4\pi \ E / \Delta$$

Survival Prob. $= \text{Prob}(\nu_e \rightarrow \nu_e, L) = 1 - \text{Prob}(\nu_e \rightarrow \nu_\mu, L)$
More on ν oscillations

- Essential ingredients: (i) $\Delta = m_1^2 - m_2^2 \neq 0$, (ii) $\sin \theta \neq 0$.

- Matter effect: Mass is a measure of inertia. In a medium inertia (and hence mass) changes. Neutrino mass and mixing affected by medium (MSW effect).

- Solar neutrino problem: $\Delta = 6.07 \times 10^{-5}$ eV2 (ii) $\tan^2 \theta = 0.41$ (Best fit -- MSW LMA)
 ν_e oscillates to another `active' neutrino (SNO NC ≈ 1)

- Atmospheric neutrino anomaly: $\Delta = 3 \times 10^{-3}$ eV2 (ii) $\sin^2 2\theta = 1$ (Best fit)
 ν_μ oscillates to ν_τ

 $m_e = 5,000,000$ eV
Three neutrino mixing matrix

Two flavour mixing:

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

In reality there are three flavours (3 angles, one phase):

![Triangular diagram with neutrino symbols](image)

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

The phase δ signals CP non-conservation.

All three mixing angles must be non-zero for CP-violation:

$\theta_{13} \sim 9^0$ (2012) Daya Bay and RENO experiments.
Three neutrino mass ordering

Solar neutrinos: $m_2^2 - m_1^2 > 0$:

From atmospheric neutrinos, only $|m_3^2 - m_1^2|$ is known

$\theta_{13} \neq 0$?

Normal mass ordering? or Inverted mass ordering? Not known!

February 03, 2019

RINP2 (Visva Bharati)
Open issues

- Standard model (SM) of particle physics has massless neutrinos.

- Oscillations signal mass difference. What is the neutrino mass?

- What is the mass ordering? Is there CP-violation?

- Is the neutrino its own anti-particle \Rightarrow Majorana neutrino!

- New physics is needed if $m_{\nu} \neq 0$? Many new ideas.
India-based Neutrino Observatory

Pottipuram: 9°57’N, 77°16’E (Bodi Hills)

Near TamilNadu-Kerala border

1km rock coverage

V.M. Datar

February 03, 2019

RINP2 (Visva Bharati)
Can the neutrino be its own anti-particle? ($\nu \equiv \nu^c$?)
The photon is its own anti-particle. (Also π^0)

In such an event, lepton number is not conserved!

A consequence \Rightarrow Neutrino-less double beta decay ($0\nu2\beta$ process)

Normal double beta decay ($2\nu2\beta$) : $X \rightarrow Y + 2 \; e^- + 2\nu_e$

Neutrino-less double beta decay ($0\nu2\beta$) : $X \rightarrow Y + 2 \; e^- \quad (\propto \langle m_\nu \rangle^2)$

Look for peak in $2e^-$ total energy

Current limit $\langle m_\nu \rangle < 0.2 \; \text{eV}$.
Sterile neutrino?

\[\text{Prob}(\nu_\mu \rightarrow \nu_e, L) = 4 \, c^2 \, s^2 \, \sin^2 \left(\frac{\Delta \, L}{4\,E} \right) \]

\(\Delta = m_2^2 - m_1^2 \) is fixed by the neutrino masses \(\Rightarrow \) This fixes the region of \((L/E) \) to which experiment should be sensitive.

Conversely observation of oscillations at a certain \((L/E) \) \(\Rightarrow \) Indicative of a certain \((m s_{\nu_2}^2 - m_{\nu_1}^2) \)

LSND Experiment (1995) used a \(\nu_\mu \) beam from \(\pi^+ \) decay and observed oscillations. \(L = 30 \, \text{m}, \, 36 \, \text{MeV} \leq E \leq 52.8 \, \text{MeV} \) \(\Rightarrow \Delta \approx 1 - 10 \, \text{eV}^2 \)

Is this result correct?

MiniBooNE (2018) with \(L \approx 0.5 \, \text{km} \) and \(200 \, \text{MeV} \leq E \leq 1250 \, \text{MeV} \) get similar results

Note \((L/E) \) is similar. \(4^{\text{th}} \) sterile neutrino?

M.R. Janani

Does not match with solar and atmospheric neutrino!
Neutrino-Nucleus scattering (COHERENT Expt)

- This is **not** an oscillation phenomenon.
- Normally we consider neutrinos scattering off electrons or perhaps quarks.
- Neutrino-Nucleus elastic scattering (much like Dark Matter detection)
- Here, neutrinos scattering *coherently* off nuclei. Scattering mediated by Z-boson exchange. Energy must be low (< 50 MeV) so that the wavelength is comparable to the nuclear size.

The cross section $\propto N^2$, where N is the no. of neutrons in the nucleus

Pulsed beam (helps background estimation)
Small-sized detector (14.6 kg)
CsI scintillator,
6.7σ signal $E \sim 16 - 53$ MeV
Fermion mass

- Fermions have spin! Left- and right-handed fermions:
 \[\psi = \psi_L + \psi_R \]

- Fermion mass couples left to right:
 \[m \bar{\psi} \psi = m(\bar{\psi}_R \psi_L + \bar{\psi}_L \psi_R) \]

- Standard Model: There is no right-handed neutrino.
 - If there is only left-handed (or right-handed) component then \(m = 0 \).
How to get $m_{\nu} \neq 0$?

- The mundane way is to add a ν_R to the SM.

- This solves the problem but has no explanation of the smallness of m_{ν}.

- This is the major hurdle in neutrino model building. To explain the smallness, one always needs new physics associated with some heavy scale, M (See-saw!). For Majorana mass, lepton number violation is also needed.

- Generic form of see-saw: $m_{\nu} = (\text{const})/M$

N Khan
Simplest new physics

- Left-right symmetric model $\Rightarrow \nu_R$ required by symmetry.
- Nature is parity violating. Left-right symmetry is broken at a high energy scale, M_R.
- Neutrino mass matrix:
 $$
 \begin{pmatrix}
 0 & m \\
 m & M_R
 \end{pmatrix}
 \quad M_R \gg m
 $$

- Two Majorana neutrinos: ν_L (mass m_ν), ν_R (mass M_R)
- See-saw mass formula: $m_\nu = (m^2)/M_R$.

- Pati-Salam model and other grand unified theories contain left-right symmetry.
- How to test for M_R?
Physics Nobel Prize 2015

For the discovery of neutrino oscillations which shows that neutrinos have mass

Takaaki Kajita (Japan) &
Arthur B. McDonald (Canada)
Looking Ahead

- Mixing between three neutrinos
- CP-violation in lepton sector
- Majorana neutrinos
- Sterile neutrinos
- Long baseline experiments
- INO
- Neutrino mass matrix
- New physics: new interactions, symmetries, etc.
- Astroparticle physics: e.g. Supernova, Nucleosynthesis

A. Dighe

February 03, 2019 RINP2 (Visva Bharati)
Thank You!