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The knowns and unknowns of neutrinos

Mixing of ve, 1, v- = 11,12, v3 (Mass eigenstates)
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The knowns and unknowns of neutrinos

‘ Mixing of ve, 1/,., vr = 11,12, 3 (Mass eigenstates) ‘

e — (1)’

- (mz)2
(')
e - (m,)l

(m,)’ E——

(m|)7__

(m})g—

@ Am2, ~24x103eV?
@ Am? ~ 8 x 1072 eV?

@ Oym ~ 45°

@ 0, ~ 32°

® Oreactor ~ 9°

@ Mass ordering: Normal (N) or Inverted () ?
@ What are the absolute neutrino masses ?
@ Are there more than 3 neutrinos ?

@ |s there leptonic CP violation ?

@ Can neutrinos be their own antiparticles ?




Neutrinos come from many sources...

Where do Neutrinos Appear in Nature?

‘ v Nuclear Reactors ‘Sun v ‘

Supernovae

B | (Stellar Collapse)
‘ v’ Particle Accelerators ‘ SN 1987A v
v Earth Atmosphere Astrophysical
(Cosmic Rays) Accelerators Soon ?
v Earth Crust Cosmic Big Bang
(Natural (Today 330 v/cm?)
Radioactivity) Indirect Evidence

Georg Raffett, Max-Planck-Institut fir Phy sk, Minchen , Germany

JIGSAW 07, 12-23 Feb 2007, TIFR, Mumbai, India



Neutrinos as messengers from astrophysical sources

@ No bending in magnetic fields = point back to the source

@ Minimal obstruction / scattering = can arrive directly from
regions from where light cannot come




Spectra of neutrino sources
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Astroparticle Physics of Neutrinos

@ Neutrinos from a core collapse supernova
e Astrophysical neutrinos with ultra-high energies
e Cosmological Neutrinos with ultra-small energies

6 Multi-messenger astronomy



Astroparticle Physics of Neutrinos

0 Neutrinos from a core collapse supernova



The death of a star: role of different forces

Gravity =
y stellar Collapse Nuclear forces =

‘ Onion structure ‘ Collapse (implosion) ‘
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Neutrino fluxes: ~ 10°® neutrinos in 10 sec

Three Phases of Neutrino Emission

Prompt v, burst Accretion Cooling
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¢ Shock breakout ¢ Shock stalls ~ 150 km . .
o . Cooling on neutrino
¢ De-leptonization of ¢ Neutrinos powered by e
) ] diffusion time scale
outer core layers infalling matter

e Spherically symmetric model (10.8 M) with Boltzmann neutrino transport
¢ Explosion manually triggered by enhanced CC interaction rate
Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Georg Raffelt, MPI Physics, Munich ITN Invisibles, Training Lectures, GGI Florence, June 2012

@ Escaping neutrinos: (E,,) < (Ez,) < (E,,)



Neutrino oscillations in matter of varying density

SUPERNOVA
EARTH

VACUUM
V .

kpe 10000 km

Inside the SN: flavour conversion

Non-linear “collective” effects and resonant matter effects

Between the SN and Earth: no flavour conversion
Mass eigenstates travel independently

Inside the Earth: flavour oscillations

Resonant matter effects (if detector is shadowed by the Earth)




Can neutrino conversions affect SN explosions ?

@ Simulations of light SN have started giving explosions with
the inclusions of 2D/3D large scale convections and
hydrodynamic instabilities

@ More push to the shock wave is still desirable.
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Can neutrino conversions affect SN explosions ?

@ Simulations of light SN have started giving explosions with
the inclusions of 2D/3D large scale convections and
hydrodynamic instabilities

@ More push to the shock wave is still desirable.

@ Non-electron neutrino primary spectra harder
@ electron neutrino cross section higher
= After conversion, greater push to the shock wave

@ Deeper the conversions, greater the neutrino push

@ MSW resonances: ~ 1000 km,
Neutrino-neutrino collective effects: ~ 100 km

@ “Fast conversions”: ~ 10 km
(Angular anisotropies needed, but quite naturally possible)



SN1987A: neutrinos and light

Neutrinos: Feb 23, 1987
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SN1987A: what did we learn ?

Hubble image: now
. i

@ Confirmed the SN cooling
mechanism through neutrinos

@ Number of events too small to
say anything concrete about
neutrino mixing

@ Some constraints on
SN parameters obtained

@ Strong constraints on new
physics models obtained
(neutrino decay, Majorans,
axions, extra dimensions, ...)




Supernova neutrino detectors

LVD (400) Baksan | Super-K (10%)
Borexino (100) KamLAND (400)

Daya Bay

In brackets events
for a “fiducial SN”
at distance 10 kpc

IceCube (10°)

Slide by Georg Raffelt



What a galactic SN can tell us

On neutrino masses and mixing

@ Instant identification of neutrino mass ordering
(N or 1), through
e Neutronization burst: (almost) disappears if N
e Shock wave effects: in v (7) for N (1)




What a galactic SN can tell us

On neutrino masses and mixing

@ Instant identification of neutrino mass ordering
(N or 1), through

e Neutronization burst: (almost) disappears if N
e Shock wave effects: in v (7) for N (1)

On supernova astrophysics

@ Locate a supernova hours before the light arrives

@ Track the shock wave through neutrinos while it is still
inside the mantle (Not possible with light)

@ Possible identification of QCD phase transition, SASI
(Standing Accetion Shock) instabilities

@ Hints on heavy element nucleosynthesis (r-process)




Astroparticle Physics of Neutrinos

e Astrophysical neutrinos with ultra-high energies
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High / Ultrahigh energy neutrinos (E = TeV )

alaxy NGC 4261

Sources of UHE neutrinos

@ Primary protons interacting within the source
= 1+ = Decay to v

@ Primary protons interacting with CMB photons
= 1+ = Decay to v (GZK)

@ Individual sources like AGNs and GRBs
@ Diffused flux accumulated over the lifetime of universe

What we will learn

@ Mechanisms of astrophysical phenomena
@ Limits on neutrino decay, Lorentz violation, etc

N




Below the antarctic ice: Gigaton lceCube

1000 000 000 000 litres of ice )

w Layer

lceCube




Detection of HE neutrinos: water/ice Cherenkov

@ Thresholds of ~ 100 GeV,
controlled by the distance
between optical modules

Sensitive energy ranges

@ 10" eV < E < 10'® eV: up-going neutrinos
e No background from cosmic rays

@ E > 10817 gV: down-going neutrinos
e Atmospheric neutrino background insignificant
e Up-going neutrinos get absorbed in the Earth




Flavour sensitivity of lceCube

Charged-current v, Neutral-current / ve Charged-current v«

(data)

(simulation)

Up-going track Isolated energy “Double-bang”
deposition (cascade)
with no track

Factor of ~2 energy resolution 15% deposited energy resolution (none observed yet: T
< 1 degree angular resolution 10 degree angular resolution (above 100 TeV)  decay length is 50 m/PeV)

Early I TR Late



The three PeV events at Icecube

@ Three events at
~1,1.1,2.2 PeV
energies found

@ Cosmogenic ? X
Glashow
resonance? X
atmospheric ?

Roulet et al 2013 ++ many

@ IceCube analyzing
54 events from
o b Ml il 30 TeV to 10 PeV
: @ Constraints on

Lorentz violation:
5(v2—1) < O(10718)

Deposited EM-Equivalent Energy in Detector (TeV)

Events per 988 Days

Borriello, Chakraborty, Mirizzi, 2013



Detection of UHE neutrinos: cosmic ray showers

@ Neutrinos with E > 107 eV
can induce giant air showers
(probability < 104)

@ Deep down-going muon showers

@ Deep-going v, interacting in the
mountains

@ Up-going Earth-skimming v, shower
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Detection through radio waves: ANITA

o
(=)
(=)
G5
=

@ Charged particle shower =
Radio Askaryan: charged clouds
emit coherent radio waves
through interactions with Bg,un
or Cherenkov

@ Detectable for E > 107 eV at
balloon experiments like ANITA

o P = = z 9ac




Limits on UHE neutrino fluxes
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Waxman-Bahcall, AMANDA, Antares, RICE, Auger, IceCube
Also expect complementary info from: ANITA, NEMO,
NESTOR, KM3NET ...



Flavor information from UHE neutrinos

Flavor ratios ve : v, : v, at sources

@ Neutron source (nS):1:0:0
@ Pion source (7S):1:2:0,
@ Muon-absorbing sources (uDS): 0:1:0
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Flavor information from UHE neutrinos

Flavor ratios ve : v, : v, at sources

@ Neutron source (nS): 1
@ Pion source (xS): 1:2: 0,
@ Muon-absorbing sources (uDS): 0:1:0

Flavor ratios at detectors (with neutrino mixing)

@ Neutron source: ~5:2:2
@ Pionsource: ~1:1:1
@ Muon-absorbing sources : ~4:7 :7

New physics effects

@ Decaying neutrinos can skew the flavor ratio even further:
asextremeas6:1:1o0r0:1:1
Ratio measurement = improved limits on neutrino lifetimes

Beacom et al, PRE 2003



Astroparticle Physics of Neutrinos

e Cosmological Neutrinos with ultra-small energies
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The big-bang relic neutrinos (~ 0.1 meV)

@ Relic density: ~ 110 neutrinos /flavor /cm®
@ Temperature: T, = (4/11)"/3Teyp ~ 1.95 K = 0.17 meV
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The big-bang relic neutrinos (~ 0.1 meV)

@ Relic density: ~ 110 neutrinos /flavor /cm®
@ Temperature: T, = (4/11)"/3Teyp ~ 1.95 K = 0.17 meV
@ The effective number of neutrino flavors:
Neir(SM) = 3.074. Planck = N = 3.30 +0.27.
@ Contribution to dark matter density:

Q /Qbyon = 05 (3 m, /eV)

@ Looking really far back:
Time Temp z
CMB photons  ~ 400,000 years 0.26 eV 1100
Relic neutrinos 0.18 s ~2MeV ~ 1070

Lazauskas, Vogel, Volpe, 2008



Detection of relic neutrinos: the torsion balance idea

@ De Brogli wavelength of relic
+— LoserResonor neutrinos: A ~ h/p ~ 1.5mm.

Alx e @y can interact coherently with a
sphere of this size

«—>5Suspension Magnet

Balancing Mass

v @ Measure force on such
e fest “spheres” due to the relic
neutrino wind



Detection of relic neutrinos: the torsion balance idea

@ De Brogli wavelength of relic
+— LoserResonor neutrinos: A ~ h/p ~ 1.5mm.

Persistent Magnet
>x<|>:< — -

@ v can interact coherently with a
sphere of this size

IE «—>5Suspension Magnet

Balancing Mass

v @ Measure force on such
e fest “spheres” due to the relic
neutrino wind

@ For iron spheres and 100 times local overdensity for v,
acceleration a < 10726 ¢m /s
Shvartsman et al 1982
@ > 10 orders of magnitude smaller than the sensitivity of
current torsion balance technology
@ If neutrinos are Majorana, a further suppression by
v/c ~ 10° (polarized target), (v/c)? ~ 10~° (unpolarized)
Hagmann, astro-ph/9901102

@ The idea is rather impractical at the moment.
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@ Need detection of low-energy neutrinos, so look for
zero-threshold interactions

@ Beta-capture on beta-decaying nuclei:

ve+ Niy(A,Z) = No(AZ+1)+ e

End-point region (E > My, — My, ) background-free.
Energy resolution crucial.

Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009



The inverse beta reaction

@ Need detection of low-energy neutrinos, so look for
zero-threshold interactions

@ Beta-capture on beta-decaying nuclei:

ve+ Niy(A,Z) = No(AZ+1)+ e

End-point region (E > My, — My, ) background-free.
Energy resolution crucial.
Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

@ Possible at ®H experiments with 100 g of pure tritium but
atomic tritium is neeed to avoid molecular energy levels

o '8 Re at MARE also suggested, but a lot more material will
be needed

@ Search for ways of detection still on ...

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011



Astroparticle Physics of Neutrinos

0 Multi-messenger astronomy



Light, neutrinos, and gravitational waves

Gamma ray X-ray Visible

Near infrared Infrared Radio waves
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Blazar at lceCube

Follow-up detections of IC170922 based on public telegrams
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Blazar at lceCube

Follow-up Observations of IceCube Alert IC170922

Fermi i NuSTAR

AGILE

ASAS-SN
L™

Subary

Observataries
@ Earth Observatory

4 Space Observatory

Detections

4. ® Observations with detection

Swift o




Final Remarks

@ Astrophysical observations have played a crucial role in
unravelling neutrino properties.

@ The knowledge of neutrino properties can now be used to
learn about astrophysical phenomena.
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