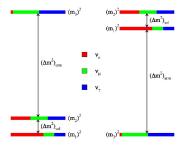
Astroparticle physics of neutrinos

Amol Dighe

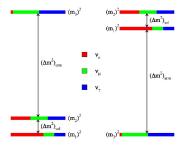

Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai

Recent Issues in Nuclear and Particle Physics (RINP2) Visva Bharati, Feb 4th, 2019

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The knowns and unknowns of neutrinos

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1$, ν_2 , ν_3 (mass eigenstates)

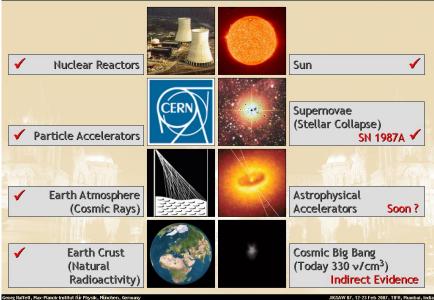


- $\Delta m_{\rm atm}^2 pprox 2.4 imes 10^{-3} \ eV^2$
- $\Delta m_\odot^2 \approx 8 \times 10^{-5} \ {\rm eV^2}$
- $\theta_{\rm atm} \approx 45^{\circ}$
- $\theta_{\odot} \approx 32^{\circ}$
- $\theta_{\text{reactor}} \approx 9^{\circ}$

- Mass ordering: Normal (N) or Inverted (I) ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Is there leptonic CP violation ?
- Can neutrinos be their own antiparticles ?

The knowns and unknowns of neutrinos

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1$, ν_2 , ν_3 (mass eigenstates)

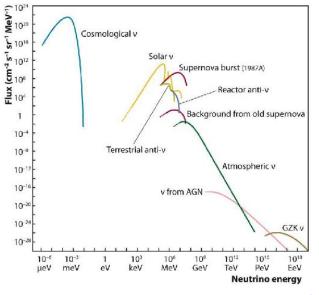

- $\Delta m_{\rm atm}^2 pprox 2.4 imes 10^{-3} \ eV^2$
- $\Delta m_\odot^2 \approx 8 \times 10^{-5} \ {\rm eV^2}$
- $\theta_{\rm atm} \approx 45^{\circ}$
- $\theta_{\odot} \approx 32^{\circ}$

• $\theta_{\text{reactor}} \approx 9^{\circ}$

- Mass ordering: Normal (N) or Inverted (I) ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Is there leptonic CP violation ?
- Can neutrinos be their own antiparticles ?

Neutrinos come from many sources...

Where do Neutrinos Appear in Nature?



Georg Raffett, Max-Planck-Institut für Physik, Hünchen, Germany

- No bending in magnetic fields \Rightarrow point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

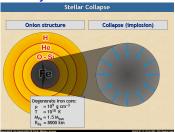
Spectra of neutrino sources

ASPERA <□><@><=> <=> <=> <=> <=> <=> <=> <=<

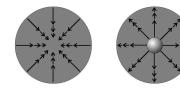
- Neutrinos from a core collapse supernova
- 2 Astrophysical neutrinos with ultra-high energies
- Cosmological Neutrinos with ultra-small energies

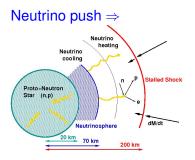
< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

4 Multi-messenger astronomy


- Neutrinos from a core collapse supernova
- 2 Astrophysical neutrinos with ultra-high energies
- 3 Cosmological Neutrinos with ultra-small energies

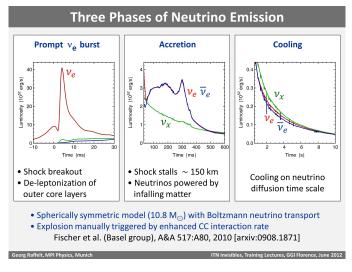
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


4 Multi-messenger astronomy


The death of a star: role of different forces

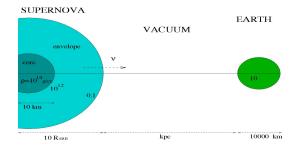
Gravity \Rightarrow

Nuclear forces \Rightarrow



Hydrodynamics \Rightarrow

(Crab nebula, SN seen in 1054) 🧠 🕫


Neutrino fluxes: $\sim 10^{58}$ neutrinos in 10 sec

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\overline{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

Neutrino oscillations in matter of varying density

Inside the SN: flavour conversion

Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour oscillations

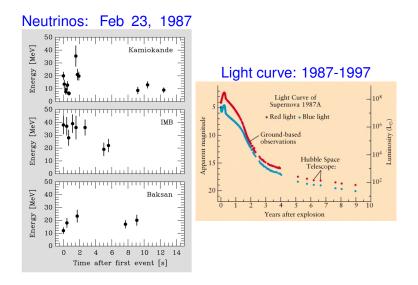
Resonant matter effects (if detector is shadowed by the Earth)

Can neutrino conversions affect SN explosions ?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 ⊕ electron neutrino cross section higher
 ⇒ After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- MSW resonances: \sim 1000 km, Neutrino-neutrino collective effects: \sim 100 km
- "Fast conversions": ~ 10 km (Angular anisotropies needed, but quite naturally possible)

・ロト・日本・日本・日本・日本

Can neutrino conversions affect SN explosions ?


- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 ⊕ electron neutrino cross section higher
 ⇒ After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- MSW resonances: \sim 1000 km, Neutrino-neutrino collective effects: \sim 100 km
- "Fast conversions": ~ 10 km (Angular anisotropies needed, but quite naturally possible

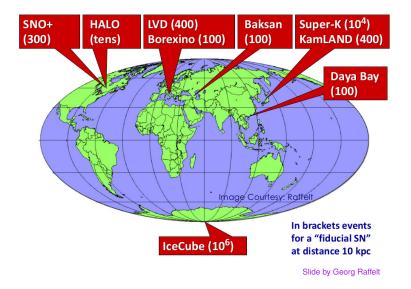
シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Can neutrino conversions affect SN explosions ?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 ⊕ electron neutrino cross section higher
 ⇒ After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- MSW resonances: \sim 1000 km, Neutrino-neutrino collective effects: \sim 100 km
- "Fast conversions": ~ 10 km (Angular anisotropies needed, but quite naturally possible)

SN1987A: neutrinos and light

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● のへで


SN1987A: what did we learn ?

Hubble image: now

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained
- Strong constraints on new physics models obtained (neutrino decay, Majorans, axions, extra dimensions, ...)

Supernova neutrino detectors

What a galactic SN can tell us

On neutrino masses and mixing

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: (almost) disappears if N
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)

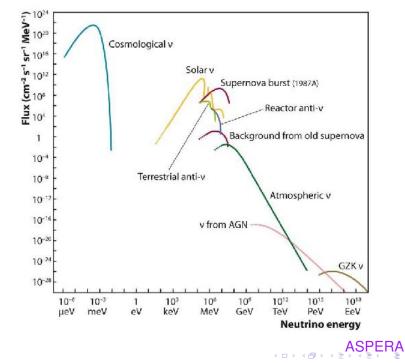
On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities
- Hints on heavy element nucleosynthesis (r-process)

(日) (日) (日) (日) (日) (日) (日)

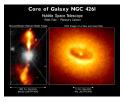
On neutrino masses and mixing

- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: (almost) disappears if N
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)


On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities
- Hints on heavy element nucleosynthesis (r-process)

- Neutrinos from a core collapse supernova
- 2 Astrophysical neutrinos with ultra-high energies
- 3 Cosmological Neutrinos with ultra-small energies

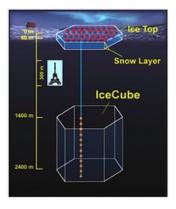

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

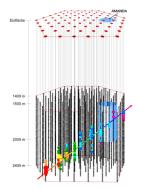
4 Multi-messenger astronomy

na a

High / Ultrahigh energy neutrinos ($E \gtrsim \text{TeV}$)

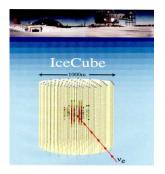
Sources of UHE neutrinos


- Primary protons interacting within the source $\Rightarrow \pi^{\pm} \Rightarrow$ Decay to ν
- Primary protons interacting with CMB photons $\Rightarrow \pi^{\pm} \Rightarrow$ Decay to ν (GZK)
- Individual sources like AGNs and GRBs
- Diffused flux accumulated over the lifetime of universe


What we will learn

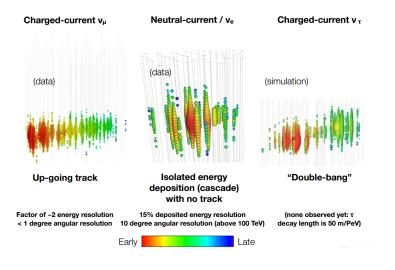
- Mechanisms of astrophysical phenomena
- Limits on neutrino decay, Lorentz violation, etc

Below the antarctic ice: Gigaton IceCube


1 000 000 000 000 litres of ice

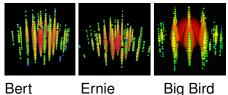
◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Detection of HE neutrinos: water/ice Cherenkov

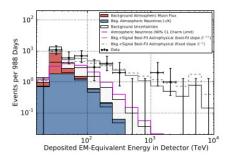


 Thresholds of ~ 100 GeV, controlled by the distance between optical modules

Sensitive energy ranges


- $10^{11} \text{ eV} \lesssim E \lesssim 10^{16} \text{ eV}$: up-going neutrinos
 - No background from cosmic rays
- $E \gtrsim 10^{16-17}$ eV: down-going neutrinos
 - Atmospheric neutrino background insignificant
 - Up-going neutrinos get absorbed in the Earth

Flavour sensitivity of IceCube


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The three PeV events at Icecube

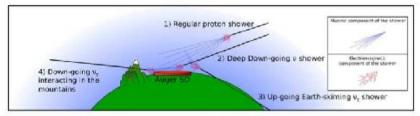
Bert

Ernie

- Three events at \sim 1, 1.1, 2.2 PeV energies found
- Cosmogenic ? X Glashow resonance? X atmospheric?

Roulet et al 2013 ++ many

- IceCube analyzing 54 events from 30 TeV to 10 PeV
- Constraints on Lorentz violation: $\delta(v^2-1) \leq \mathcal{O}(10^{-18})$

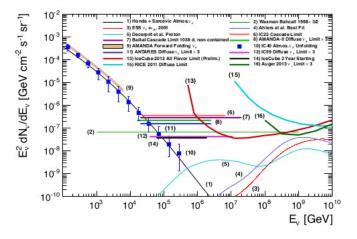

Borriello, Chakraborty, Mirizzi, 2013

・ロト ・ 同 ト ・ 回 ト ・ 回 ト

Detection of UHE neutrinos: cosmic ray showers

- Neutrinos with $E \gtrsim 10^{17}$ eV can induce giant air showers (probability $\lesssim 10^{-4}$)
- Deep down-going muon showers
- Deep-going ν_{τ} interacting in the mountains
- Up-going Earth-skimming ν_{τ} shower

Detection through radio waves: ANITA



- Charged particle shower ⇒ Radio Askaryan: charged clouds emit coherent radio waves through interactions with B_{Earth} or Cherenkov
- Detectable for $E \gtrsim 10^{17}$ eV at balloon experiments like ANITA

・ロト ・ 四ト ・ ヨト ・ ヨト ・ ヨ

Limits on UHE neutrino fluxes

Waxman-Bahcall, AMANDA, Antares, RICE, Auger, IceCube Also expect complementary info from: ANITA, NEMO, NESTOR, KM3NET ...

Flavor information from UHE neutrinos

Flavor ratios $\nu_e : \nu_\mu : \nu_\tau$ at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (*π*S): 1 : 2 : 0,
- Muon-absorbing sources (µDS): 0 : 1 : 0

Flavor ratios at detectors (with neutrino mixing)

- Neutron source: \approx 5 : 2 : 2
- Pion source: \approx 1 : 1 : 1
- Muon-absorbing sources : \approx 4 : 7 : 7

New physics effects

 Decaying neutrinos can skew the flavor ratio even further: as extreme as 6 : 1 : 1 or 0 : 1 : 1 Ratio measurement ⇒ improved limits on neutrino lifetimes

Flavor information from UHE neutrinos

Flavor ratios $\nu_e : \nu_\mu : \nu_\tau$ at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (*π*S): 1 : 2 : 0,
- Muon-absorbing sources (μDS): 0 : 1 : 0

Flavor ratios at detectors (with neutrino mixing)

- Neutron source: $\approx 5:2:2$
- Pion source: $\approx 1 : 1 : 1$
- Muon-absorbing sources : \approx 4 : 7 : 7

New physics effects

 Decaying neutrinos can skew the flavor ratio even further: as extreme as 6 : 1 : 1 or 0 : 1 : 1 Ratio measurement ⇒ improved limits on neutrino lifetimes

Flavor information from UHE neutrinos

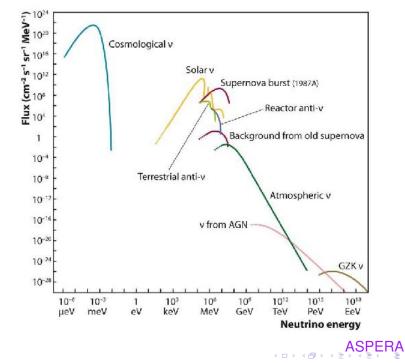
Flavor ratios ν_e : $\overline{\nu_{\mu}}$: ν_{τ} at sources

- Neutron source (nS): 1 : 0 : 0
- Pion source (*π*S): 1 : 2 : 0,
- Muon-absorbing sources (µDS): 0 : 1 : 0

Flavor ratios at detectors (with neutrino mixing)

- Neutron source: $\approx 5:2:2$
- Pion source: $\approx 1 : 1 : 1$
- Muon-absorbing sources : \approx 4 : 7 : 7

New physics effects


 Decaying neutrinos can skew the flavor ratio even further: as extreme as 6 : 1 : 1 or 0 : 1 : 1

Ratio measurement \Rightarrow improved limits on neutrino lifetimes

- Neutrinos from a core collapse supernova
- 2 Astrophysical neutrinos with ultra-high energies
- Cosmological Neutrinos with ultra-small energies

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4 Multi-messenger astronomy

na a

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_{
u}/\Omega_{
m baryon} = 0.5 \left(\sum m_{
u}/
m eV
ight)$$

Looking really far back:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_{\nu}/\Omega_{\rm baryon} = 0.5 \left(\sum m_{\nu}/{\rm eV}\right)$$

Looking really far back:

(日) (日) (日) (日) (日) (日) (日)

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}(\rm SM) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

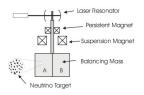
$$\Omega_{\nu}/\Omega_{\rm baryon} = 0.5 \left(\sum m_{\nu}/{\rm eV}\right)$$

Looking really far back:

(日) (日) (日) (日) (日) (日) (日)

The big-bang relic neutrinos ($\sim 0.1 \text{ meV}$)

- Relic density: ~ 110 neutrinos /flavor /cm³
- Temperature: $T_{\nu} = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95 \text{ K} = 0.17 \text{ meV}$
- The effective number of neutrino flavors: $N_{\rm eff}({
 m SM}) = 3.074$. Planck $\Rightarrow N_{\rm eff} = 3.30 \pm 0.27$.
- Contribution to dark matter density:


$$\Omega_{\nu}/\Omega_{\rm baryon} = 0.5 \left(\sum m_{\nu}/{\rm eV}\right)$$

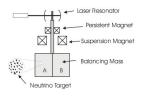
Looking really far back:

	Time	Temp	Z
CMB photons	\sim 400,000 years	0.26 eV	1100
Relic neutrinos	0.18 s	\sim 2 MeV	$\sim 10^{10}$
	L	Lazauskas, Vogel, Volpe, 2008	

(日) (日) (日) (日) (日) (日) (日)

Detection of relic neutrinos: the torsion balance idea

- De Brogli wavelength of relic neutrinos: λ ≈ h/p ≈ 1.5mm.
- ν can interact coherently with a sphere of this size
- Measure force on such "spheres" due to the relic neutrino wind
- For iron spheres and 100 times local overdensity for ν , acceleration $a \lesssim 10^{-26}$ cm /s²


Shvartsman et al 1982

- $\bullet\gtrsim$ 10 orders of magnitude smaller than the sensitivity of current torsion balance technology
- If neutrinos are Majorana, a further suppression by $v/c \approx 10^3$ (polarized target), $(v/c)^2 \approx 10^{-6}$ (unpolarized)

Hagmann, astro-ph/9901102

• The idea is rather impractical at the moment.

Detection of relic neutrinos: the torsion balance idea

- De Brogli wavelength of relic neutrinos: λ ≈ h/p ≈ 1.5mm.
- ν can interact coherently with a sphere of this size
- Measure force on such "spheres" due to the relic neutrino wind
- For iron spheres and 100 times local overdensity for ν , acceleration $a \lesssim 10^{-26}$ cm /s²

Shvartsman et al 1982

- $\bullet \gtrsim$ 10 orders of magnitude smaller than the sensitivity of current torsion balance technology
- If neutrinos are Majorana, a further suppression by $v/c \approx 10^3$ (polarized target), $(v/c)^2 \approx 10^{-6}$ (unpolarized)

Hagmann, astro-ph/9901102

• The idea is rather impractical at the moment.

The inverse beta reaction

 Need detection of low-energy neutrinos, so look for zero-threshold interactions

• Beta-capture on beta-decaying nuclei:

 $u_{e} + N_{1}(A, Z)
ightarrow N_{2}(A, Z+1) + e^{-}$

End-point region ($E > M_{N_1} - M_{N_2}$) background-free. Energy resolution crucial.

Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

- Possible at ³H experiments with 100 g of pure tritium but atomic tritium is neeed to avoid molecular energy levels
- ¹⁸⁷Re at MARE also suggested, but a lot more material will be needed
- Search for ways of detection still on ...

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The inverse beta reaction

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

 $\nu_e + N_1(A, Z) \rightarrow N_2(A, Z+1) + e^-$

End-point region ($E > M_{N_1} - M_{N_2}$) background-free. Energy resolution crucial.

Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

- Possible at ³H experiments with 100 g of pure tritium but atomic tritium is neeed to avoid molecular energy levels
- ¹⁸⁷Re at MARE also suggested, but a lot more material will be needed
- Search for ways of detection still on ...

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011

(ロ) (同) (三) (三) (三) (○) (○)

The inverse beta reaction

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

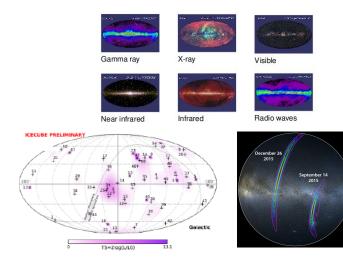
 $u_e + N_1(A, Z) \rightarrow N_2(A, Z+1) + e^-$

End-point region ($E > M_{N_1} - M_{N_2}$) background-free. Energy resolution crucial.

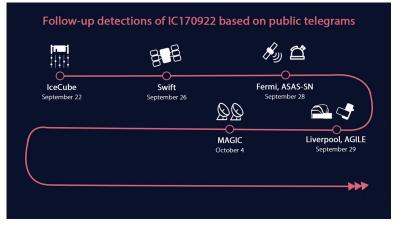
Weinberg 1962, cocco, Mangano, Messina 2008, Lazauskas et al 2008, Hodak et al 2009

- Possible at ³H experiments with 100 g of pure tritium but atomic tritium is neeed to avoid molecular energy levels
- ¹⁸⁷Re at MARE also suggested, but a lot more material will be needed
- Search for ways of detection still on ...

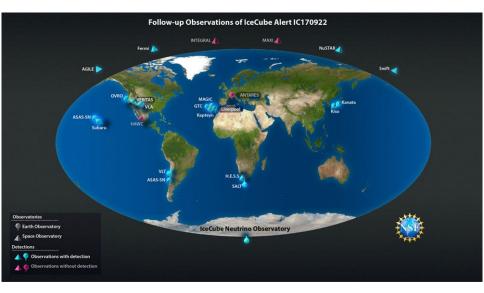
Lazauskas, Vogel, Volpe 2009, Hodak et al 2011


(ロ) (同) (三) (三) (三) (○) (○)

- Neutrinos from a core collapse supernova
- 2 Astrophysical neutrinos with ultra-high energies
- 3 Cosmological Neutrinos with ultra-small energies


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

4 Multi-messenger astronomy


Light, neutrinos, and gravitational waves

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Blazar at IceCube

 Astrophysical observations have played a crucial role in unravelling neutrino properties.

• The knowledge of neutrino properties can now be used to learn about astrophysical phenomena.

(ロ) (同) (三) (三) (三) (○) (○)