Astroparticle physics of neutrinos

Amol Dighe

Department of Theoretical Physics
Tata Institute of Fundamental Research, Mumbai

Recent Issues in Nuclear and Particle Physics (RINP2)
Visva Bharati, Feb 4th, 2019
The knowns and unknowns of neutrinos

Mixing of $\nu_e, \nu_\mu, \nu_\tau \Rightarrow \nu_1, \nu_2, \nu_3$ (mass eigenstates)

- $\Delta m_{\text{atm}}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$
- $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2$
- $\theta_{\text{atm}} \approx 45^\circ$
- $\theta_{\odot} \approx 32^\circ$
- $\theta_{\text{reactor}} \approx 9^\circ$

- Mass ordering: Normal (N) or Inverted (I) ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Is there leptonic CP violation ?
- Can neutrinos be their own antiparticles ?
The knowns and unknowns of neutrinos

Mixing of ν_e, ν_μ, $\nu_\tau \Rightarrow \nu_1, \nu_2, \nu_3$ (mass eigenstates)

- $\Delta m_{\text{atm}}^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$
- $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2$
- $\theta_{\text{atm}} \approx 45^\circ$
- $\theta_{\odot} \approx 32^\circ$
- $\theta_{\text{reactor}} \approx 9^\circ$

- Mass ordering: Normal (N) or Inverted (I) ?
- What are the absolute neutrino masses ?
- Are there more than 3 neutrinos ?
- Is there leptonic CP violation ?
- Can neutrinos be their own antiparticles ?
Neutrinos come from many sources...

Where do Neutrinos Appear in Nature?

<table>
<thead>
<tr>
<th>Source</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Reactors</td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Supernovae (Stellar Collapse)</td>
<td></td>
</tr>
<tr>
<td>Sun 1987A</td>
<td></td>
</tr>
<tr>
<td>Particle Accelerators</td>
<td></td>
</tr>
<tr>
<td>Astrophysical Accelerators</td>
<td></td>
</tr>
<tr>
<td>Earth Atmosphere (Cosmic Rays)</td>
<td></td>
</tr>
<tr>
<td>Earth Crust (Natural Radioactivity)</td>
<td></td>
</tr>
<tr>
<td>Cosmic Big Bang (Today 330 v/cm^3) Indirect Evidence</td>
<td></td>
</tr>
</tbody>
</table>
Neutrinos as messengers from astrophysical sources

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come
Spectra of neutrino sources

- Cosmological ν
- Solar ν
- Supernova burst (1987A)
- Reactor anti-ν
- Background from old supernova
- Terrestrial anti-ν
- Atmospheric ν
- ν from AGN
- GZK ν

Flux (cm$^{-2}$ s$^{-1}$ sr$^{-1}$ MeV$^{-1}$)

Neutrino energy:
- 10^{-6} meV
- 10^{-3} meV
- 1 eV
- 10^3 keV
- 10^6 MeV
- 10^9 GeV
- 10^{12} TeV
- 10^{15} PeV
- 10^{13} EeV
Astroparticle Physics of Neutrinos

1. Neutrinos from a core collapse supernova
2. Astrophysical neutrinos with ultra-high energies
3. Cosmological Neutrinos with ultra-small energies
4. Multi-messenger astronomy
Astroparticle Physics of Neutrinos

1. Neutrinos from a core collapse supernova
2. Astrophysical neutrinos with ultra-high energies
3. Cosmological Neutrinos with ultra-small energies
4. Multi-messenger astronomy
The death of a star: role of different forces

Gravity ⇒

Nuclear forces ⇒

Neutrino push ⇒

Hydrodynamics ⇒

(Crab nebula, SN seen in 1054)
Neutrino fluxes: $\sim 10^{58}$ neutrinos in 10 sec

Three Phases of Neutrino Emission

- **Prompt ν_e burst**
 - Shock breakout
 - De-leptonization of outer core layers

- **Accretion**
 - Shock stalls ~ 150 km
 - Neutrinos powered by infalling matter

- **Cooling**
 - Cooling on neutrino diffusion time scale

- Spherically symmetric model ($10.8 M_\odot$) with Boltzmann neutrino transport
- Explosion manually triggered by enhanced CC interaction rate

 Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

- Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$
Neutrino oscillations in matter of varying density

Inside the SN: *flavour conversion*

Non-linear “collective” effects and resonant matter effects

Between the SN and Earth: *no flavour conversion*

Mass eigenstates travel independently

Inside the Earth: *flavour oscillations*

Resonant matter effects (*if detector is shadowed by the Earth*)
Can neutrino conversions affect SN explosions?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities
- More push to the shock wave is still desirable.

- Non-electron neutrino primary spectra harder
 ⊕ electron neutrino cross section higher
 ⇒ After conversion, greater push to the shock wave

- Deeper the conversions, greater the neutrino push

- MSW resonances: \(\sim 1000 \text{ km} \),
 Neutrino-neutrino collective effects: \(\sim 100 \text{ km} \)

- “Fast conversions”: \(\sim 10 \text{ km} \)
 (Angular anisotropies needed, but quite naturally possible)
Can neutrino conversions affect SN explosions?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities.
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 ⊕ electron neutrino cross section higher
 ⇒ After conversion, greater push to the shock wave

- Deeper the conversions, greater the neutrino push

- MSW resonances: \(\sim 1000 \text{ km} \),
 Neutrino-neutrino collective effects: \(\sim 100 \text{ km} \)

- “Fast conversions”: \(\sim 10 \text{ km} \)
 (Angular anisotropies needed, but quite naturally possible)
Can neutrino conversions affect SN explosions?

- Simulations of light SN have started giving explosions with the inclusions of 2D/3D large scale convections and hydrodynamic instabilities.
- More push to the shock wave is still desirable.
- Non-electron neutrino primary spectra harder
 - Electron neutrino cross section higher
 - After conversion, greater push to the shock wave
- Deeper the conversions, greater the neutrino push
- MSW resonances: \(\sim 1000 \) km,
 - Neutrino-neutrino collective effects: \(\sim 100 \) km
- “Fast conversions”: \(\sim 10 \) km
 - (Angular anisotropies needed, but quite naturally possible)
SN1987A: neutrinos and light

Neutrinos: Feb 23, 1987

Light curve: 1987-1997
SN1987A: what did we learn?

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained
- Strong constraints on new physics models obtained (neutrino decay, Majorons, axions, extra dimensions, ...)

Hubble image: now
Supernova neutrino detectors

- SNO+ (300)
- HALO (tens)
- LVD (400) Borexino (100)
- Baksan (100)
- Super-K (10^4) KamLAND (400)
- Daya Bay (100)

In brackets events for a “fiducial SN” at distance 10 kpc

Image Courtesy: Raffelt

Slide by Georg Raffelt
What a galactic SN can tell us

On neutrino masses and mixing
- Instant identification of neutrino mass ordering \((N \text{ or } I)\), through
 - Neutronization burst: (almost) disappears if \(N\)
 - Shock wave effects: in \(\nu (\bar{\nu})\) for \(N (I)\)

On supernova astrophysics
- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities
- Hints on heavy element nucleosynthesis (r-process)
What a galactic SN can tell us

On neutrino masses and mixing
- Instant identification of neutrino mass ordering (N or I), through
 - Neutronization burst: (almost) disappears if N
 - Shock wave effects: in ν ($\bar{\nu}$) for N (I)

On supernova astrophysics
- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)
- Possible identification of QCD phase transition, SASI (Standing Accetion Shock) instabilities
- Hints on heavy element nucleosynthesis (r-process)
1. Neutrinos from a core collapse supernova

2. Astrophysical neutrinos with ultra-high energies

3. Cosmological Neutrinos with ultra-small energies

4. Multi-messenger astronomy
High / Ultrahigh energy neutrinos ($E \gtrsim \text{TeV}$)

Sources of UHE neutrinos

- Primary protons interacting within the source
 \[\Rightarrow \pi^\pm \Rightarrow \text{Decay to } \nu \]
- Primary protons interacting with CMB photons
 \[\Rightarrow \pi^\pm \Rightarrow \text{Decay to } \nu \text{ (GZK)} \]
- Individual sources like AGNs and GRBs
- Diffused flux accumulated over the lifetime of universe

What we will learn

- Mechanisms of astrophysical phenomena
- Limits on neutrino decay, Lorentz violation, etc
Below the antarctic ice: Gigaton IceCube

1 000 000 000 000 litres of ice
Detection of HE neutrinos: water/ice Cherenkov

- Thresholds of ~ 100 GeV, controlled by the distance between optical modules

Sensitive energy ranges

- $10^{11} \text{ eV} \lesssim E \lesssim 10^{16} \text{ eV}$: up-going neutrinos
 - No background from cosmic rays
- $E \gtrsim 10^{16-17} \text{ eV}$: down-going neutrinos
 - Atmospheric neutrino background insignificant
 - Up-going neutrinos get absorbed in the Earth
The three PeV events at Icecube

- Three events at $\sim 1, 1.1, 2.2$ PeV energies found
- Cosmogenic? \times Glashow resonance? \times atmospheric?
 - Roulet et al 2013 ++ many
- IceCube analyzing 54 events from 30 TeV to 10 PeV
- Constraints on Lorentz violation: $\delta (\nu^2 - 1) \lesssim O(10^{-18})$
 - Borriello, Chakraborty, Mirizzi, 2013
Detection of UHE neutrinos: cosmic ray showers

- Neutrinos with $E \gtrsim 10^{17}$ eV can induce giant air showers (probability $\lesssim 10^{-4}$)
- Deep down-going muon showers
- Deep-going ν_τ interacting in the mountains
- Up-going Earth-skimming ν_τ shower
Detection through radio waves: ANITA

Charged particle shower \Rightarrow Radio Askaryan: charged clouds emit coherent radio waves through interactions with B_{Earth} or Cherenkov

Detectable for $E \gtrsim 10^{17}$ eV at balloon experiments like ANITA
Limits on UHE neutrino fluxes

Waxman-Bahcall, AMANDA, Antares, RICE, Auger, IceCube
Also expect complementary info from: ANITA, NEMO, NESTOR, KM3NET ...
Flavor information from UHE neutrinos

Flavor ratios $\nu_e : \nu_\mu : \nu_\tau$ at sources

- Neutron source (nS): $1 : 0 : 0$
- Pion source (πS): $1 : 2 : 0$
- Muon-absorbing sources (μDS): $0 : 1 : 0$

Flavor ratios at detectors (with neutrino mixing)

- Neutron source: $\approx 5 : 2 : 2$
- Pion source: $\approx 1 : 1 : 1$
- Muon-absorbing sources: $\approx 4 : 7 : 7$

New physics effects

- Decaying neutrinos can skew the flavor ratio even further: as extreme as $6 : 1 : 1$ or $0 : 1 : 1$

Ratio measurement \Rightarrow improved limits on neutrino lifetimes
Flavor information from UHE neutrinos

<table>
<thead>
<tr>
<th>Flavor ratios $\nu_e : \nu_\mu : \nu_\tau$ at sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron source (nS): 1 : 0 : 0</td>
</tr>
<tr>
<td>Pion source (πS): 1 : 2 : 0,</td>
</tr>
<tr>
<td>Muon-absorbing sources (μDS): 0 : 1 : 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flavor ratios at detectors (with neutrino mixing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron source: $\approx 5 : 2 : 2$</td>
</tr>
<tr>
<td>Pion source: $\approx 1 : 1 : 1$</td>
</tr>
<tr>
<td>Muon-absorbing sources: $\approx 4 : 7 : 7$</td>
</tr>
</tbody>
</table>

New physics effects
- Decaying neutrinos can skew the flavor ratio even further: as extreme as 6 : 1 : 1 or 0 : 1 : 1
- Ratio measurement \Rightarrow improved limits on neutrino lifetimes
Flavor information from UHE neutrinos

Flavor ratios $\nu_e : \nu_\mu : \nu_\tau$ at sources
- Neutron source (nS): $1 : 0 : 0$
- Pion source (πS): $1 : 2 : 0$
- Muon-absorbing sources (μDS): $0 : 1 : 0$

Flavor ratios at detectors (with neutrino mixing)
- Neutron source: $\approx 5 : 2 : 2$
- Pion source: $\approx 1 : 1 : 1$
- Muon-absorbing sources: $\approx 4 : 7 : 7$

New physics effects
- Decaying neutrinos can skew the flavor ratio even further: as extreme as $6 : 1 : 1$ or $0 : 1 : 1$
- Ratio measurement \Rightarrow improved limits on neutrino lifetimes

Beacom et al, PRL 2003
Astroparticle Physics of Neutrinos

1. Neutrinos from a core collapse supernova
2. Astrophysical neutrinos with ultra-high energies
3. Cosmological Neutrinos with ultra-small energies
4. Multi-messenger astronomy
The big-bang relic neutrinos (~ 0.1 meV)

- Relic density: ~ 110 neutrinos /flavor /cm3
- Temperature: $T_\nu = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95$ K = 0.17 meV
- The effective number of neutrino flavors:
 \[N_{\text{eff}}(\text{SM}) = 3.074. \text{ Planck} \Rightarrow N_{\text{eff}} = 3.30 \pm 0.27. \]
- Contribution to dark matter density:
 \[\Omega_\nu/\Omega_{\text{baryon}} = 0.5 \left(\sum m_\nu/\text{eV} \right) \]

Looking really far back:

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Temp</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB photons</td>
<td>$\sim 400,000$ years</td>
<td>0.26 eV</td>
<td>1100</td>
</tr>
<tr>
<td>Relic neutrinos</td>
<td>0.18 s</td>
<td>~ 2 MeV</td>
<td>$\sim 10^{10}$</td>
</tr>
</tbody>
</table>

Lazauskas, Vogel, Volpe, 2008
The big-bang relic neutrinos (~ 0.1 meV)

- Relic density: ~ 110 neutrinos /flavor /cm3
- Temperature: $T_\nu = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95$ K $= 0.17$ meV
- The effective number of neutrino flavors: $N_{\text{eff}}(\text{SM}) = 3.074$. Planck $\Rightarrow N_{\text{eff}} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_\nu / \Omega_{\text{baryon}} = 0.5 \left(\sum m_\nu / \text{eV} \right)$$

Looking really far back:

<table>
<thead>
<tr>
<th>Time</th>
<th>Temp</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMB photons</td>
<td>$\sim 400,000$ years</td>
<td>0.26 eV</td>
</tr>
<tr>
<td>Relic neutrinos</td>
<td>0.18 s</td>
<td>~ 2 MeV</td>
</tr>
</tbody>
</table>

Lazauskas, Vogel, Volpe, 2008
The big-bang relic neutrinos (~ 0.1 meV)

- Relic density: ~ 110 neutrinos/flavor/cm3
- Temperature: $T_\nu = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95$ K = 0.17 meV
- The effective number of neutrino flavors: $N_{\text{eff}}(\text{SM}) = 3.074$. Planck $\Rightarrow N_{\text{eff}} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_\nu / \Omega_{\text{baryon}} = 0.5 \left(\sum m_\nu / \text{eV} \right)$$

- Looking really far back:

<table>
<thead>
<tr>
<th>CMB photons</th>
<th>Time: $\sim 400,000$ years</th>
<th>Temp: 0.26 eV</th>
<th>z: 1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relic neutrinos</td>
<td>0.18 s</td>
<td>~ 2 MeV</td>
<td>$\sim 10^{10}$</td>
</tr>
</tbody>
</table>

Lazauskas, Vogel, Volpe, 2008
The big-bang relic neutrinos (~ 0.1 meV)

- Relic density: ~ 110 neutrinos /flavor /cm3
- Temperature: $T_\nu = (4/11)^{1/3} T_{\text{CMB}} \approx 1.95$ K $= 0.17$ meV
- The effective number of neutrino flavors: $N_{\text{eff}}(\text{SM}) = 3.074$. Planck $\Rightarrow N_{\text{eff}} = 3.30 \pm 0.27$.
- Contribution to dark matter density:

$$\Omega_\nu/\Omega_{\text{baryon}} = 0.5 \left(\sum m_\nu / \text{eV} \right)$$

- Looking really far back:

| CMB photons | $\sim 400,000$ years | 0.26 eV | 1100 |
| Relic neutrinos | 0.18 s | ~ 2 MeV | $\sim 10^{10}$ |

Lazauskas, Vogel, Volpe, 2008
Detection of relic neutrinos: the torsion balance idea

- De Broglie wavelength of relic neutrinos: \(\lambda \approx \frac{h}{p} \approx 1.5\text{mm} \).
- \(\nu \) can interact coherently with a sphere of this size.
- Measure force on such “spheres” due to the relic neutrino wind.

For iron spheres and 100 times local overdensity for \(\nu \), acceleration \(a \lesssim 10^{-26} \text{cm/s}^2 \) \cite{Shvartsman1982}.

\(\gtrsim 10 \) orders of magnitude smaller than the sensitivity of current torsion balance technology.

If neutrinos are Majorana, a further suppression by \(\nu/c \approx 10^3 \) (polarized target), \((\nu/c)^2 \approx 10^{-6} \) (unpolarized) \cite{Hagmann1999}.

The idea is rather impractical at the moment.
Detection of relic neutrinos: the torsion balance idea

- De Broglie wavelength of relic neutrinos: $\lambda \approx h/p \approx 1.5\text{mm}$.
- ν can interact coherently with a sphere of this size
- Measure force on such “spheres” due to the relic neutrino wind

- For iron spheres and 100 times local overdensity for ν, acceleration $a \lesssim 10^{-26} \text{ cm /s}^2$

- $\gtrsim 10$ orders of magnitude smaller than the sensitivity of current torsion balance technology
- If neutrinos are Majorana, a further suppression by $\nu/c \approx 10^3$ (polarized target), $(\nu/c)^2 \approx 10^{-6}$ (unpolarized)

- The idea is rather impractical at the moment.
The inverse beta reaction

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

\[\nu_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^- \]

End-point region \((E > M_{N_1} - M_{N_2})\) background-free.
Energy resolution crucial.

- Possible at \(^3\text{H}\) experiments with 100 g of pure tritium but atomic tritium is needed to avoid molecular energy levels
- \(^{187}\text{Re}\) at MARE also suggested, but a lot more material will be needed
- Search for ways of detection still on ...

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011
The inverse beta reaction

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

\[\nu_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^- \]

End-point region \((E > M_{N_1} - M_{N_2})\) background-free. Energy resolution crucial.

- Possible at \(^3\)H experiments with 100 g of pure tritium but atomic tritium is needed to avoid molecular energy levels
- \(^{187}\)Re at MARE also suggested, but a lot more material will be needed
- Search for ways of detection still on ...

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011
The inverse beta reaction

- Need detection of low-energy neutrinos, so look for zero-threshold interactions
- Beta-capture on beta-decaying nuclei:

\[\nu_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^- \]

End-point region \((E > M_{N_1} - M_{N_2})\) background-free.
Energy resolution crucial.

- Possible at \(^3\text{H}\) experiments with 100 g of pure tritium but atomic tritium is needed to avoid molecular energy levels
- \(^{187}\text{Re}\) at MARE also suggested, but a lot more material will be needed
- Search for ways of detection still on ...

Lazauskas, Vogel, Volpe 2009, Hodak et al 2011
Astroparticle Physics of Neutrinos

1. Neutrinos from a core collapse supernova
2. Astrophysical neutrinos with ultra-high energies
3. Cosmological Neutrinos with ultra-small energies
4. Multi-messenger astronomy
Light, neutrinos, and gravitational waves
Follow-up detections of IC170922 based on public telegrams

- **IceCube**
 - September 22

- **Swift**
 - September 26

- **Fermi, ASAS-SN**
 - September 28

- **MAGIC**
 - October 4

- **Liverpool, AGILE**
 - September 29
Blazar at IceCube

Follow-up Observations of IceCube Alert IC170922

Observatories
- Earth Observatory
- Space Observatory

Detections
- Observations with detection
- Observations without detection

IceCube Neutrino Observatory
Astrophysical observations have played a crucial role in unravelling neutrino properties.

The knowledge of neutrino properties can now be used to learn about astrophysical phenomena.