

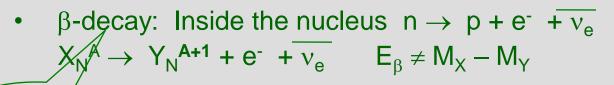
The Knowns and Unknowns of Neutrinos

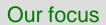
RINP2
Visva-Bharati
February 03, 2019

Amitava Raychaudhuri University of Calcutta

Neutrino properties

The dog that did not bark

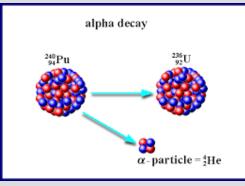



Radioactive decays

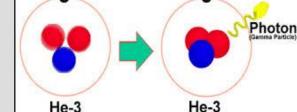
Types: α , β , and γ decays

• α -decay: the parent nucleus, X, becomes a different nucleus, Y, by the emission of an α -particle.

$$X_N^A \rightarrow Y_{N-4}^{A-2} + \alpha \quad \alpha \equiv (2n)(2p) \quad E_\alpha = M_X - M_Y$$



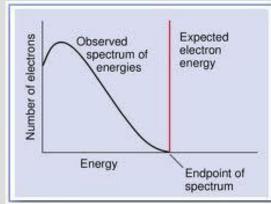
(No neutrino would give equality!)



$$(X_N^A)^* \rightarrow X_N^A + \gamma$$

$$\mathsf{E}_{\gamma} = \mathsf{M}_{\mathsf{X}^*} - \mathsf{M}_{\mathsf{X}}$$

TOP CALCO


Units

- Velocity of light. Choose units such that c = 1
- $E = m c^2 \Rightarrow Mass$ and energy in same units
- High energy ~ GeV (Giga-electron-volts) = 10⁹ eV
- Nuclear binding energy ~ MeV
- Mass of proton ~ 1GeV
- Quantum mechanics: Angular momentum ~ ħ units
- Spin of electron ħ/2
- We often choose units such that ħ = 1

Neutrino properties

- Very light
- Uncharged
- Hardly interact
- Produced e.g., in beta decay Ensures conservation of energy Another important example $\pi^+ \to \mu^+ + \nu_\mu$
- Can pass from one end of the earth to another without interaction
- Harmless, Very difficult to detect

Single beta decay energy spectrum. The observed spectrum is continuous and not at a constant energy as was initially expected. [D. Stewart]

Wolfgang Pauli

Neutrino properties

Neutrino interactions:

No strong interaction, no electromagnetic interaction.

Only weak interactions (2 types: CC and NC)

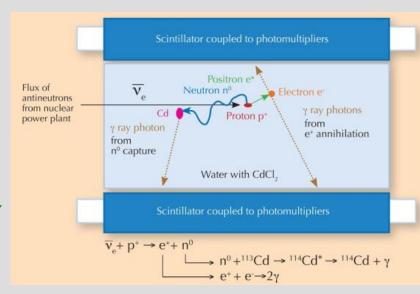

Cross section $\Rightarrow \sigma$ ($v_e + e \rightarrow v_e + e$) ~ 10^{-43} cm²

c.f. $\sigma \sim 10^{-27}$ cm² (em), $\sim 10^{-23}$ cm² (strong)

Sterile v : No weak interactions

First neutrino detection (1953)

Need an intense neutrino source


One option: Test of nuclear device (X)

Chosen: Nuclear power plant $(\sqrt{})$

Copious source of antineutrinos

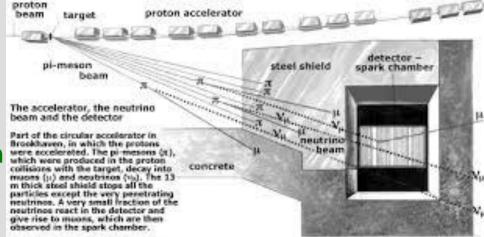
- ➤ Detector: 200 litres of water
- ightharpoonup Inverse beta decay $\overline{v} + p \rightarrow e^+ + n$
- ➤ 40kg of dissolved Cd Cl₄
- > e⁺ promptly annihilates: 2γ
- > n is slowed down by Cd
- > Then absorbed by Cd
- \triangleright Delayed photon from Cd γ -decay
- > Coincidences observed.

Fred Reines (Nobel 1995)

Neutrinos detected!

Types of Neutrinos

Daniel on a drawing in Scientific American


Brookhaven Accelerator: 15 GeV energy proton beam $p + target material \rightarrow many pi mesons + other stuff <math>\pi^{\pm}$ are unstable particles. They decay!

Pion decay: $\pi^+ \rightarrow \mu^+ + \nu$ (?)

Leon Lederman, Melvin Schwartz, Jack Steinberger $v_{\mu} \neq v_{e}$ Nobel 1988

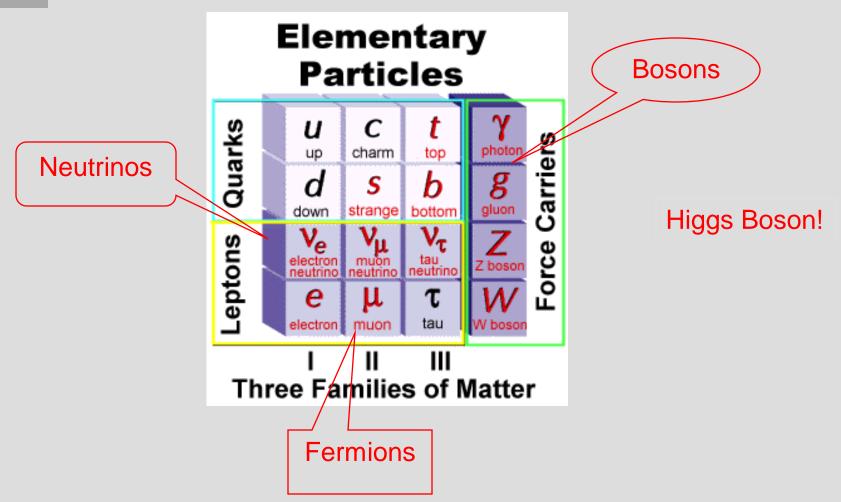
- All the particles are made to hit a 13.5m steel wall
- π^{\pm} μ^{\pm} are absorbed in the wall.
- Only neutrinos remain.
- 5ton spark chamber detector
- 1" Aluminium $\frac{3}{8}$ " gap (Ne gas) beam and the detector $\nu_{\mu} \rightarrow \mu^{-} \quad \nu_{e} \rightarrow e^{-}$: No e^{\pm} seen which were produced in the greatent which were produced in the greatent of the constant of the produced in the greatent of the
- $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\not\rightarrow \mu^+ + \nu_{e}$ (Not allowed)

Concept of man-made neutrino beams (1962)

Neutrino properties (contd.)

 v_e e v_μ μ v_τ τ

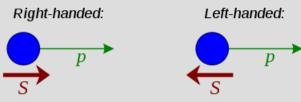
Three types: v_{e} , v_{μ} , v_{τ} are known.


A ν_e is produced from an initial electron (e). Similarly, ν_μ , ν_τ are associated with μ , τ leptons.

Many properties discovered in the past two decades

e ⁻	μ¯	τ¯	Q = -e
electron	muon	tau	
ν _e	ν _μ	ν _τ	Q = 0
electron	muon	tau	
neutrino	neutrino	neutrino	
1 st gen.	2 nd gen.	3 rd gen.	

Elementary particles


Source: http://electron9.phys.utk.edu/phys250/modules/module6/images/simplemodel2.gif

Standard Model

- The Standard Model describes strong and electroweak interactions.
- Mediated by gluons, W-boson, Z-boson, and photon.
- Fermions: Left- and right-handed quarks, left- and right-handed charged leptons, left-handed neutrino. No $v_R!$

Parity violation!

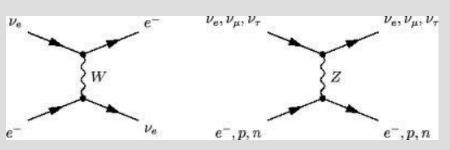
- Masses of W, Z, quarks and leptons via Higgs mechanism.
- No v_R in SM \Rightarrow Neutrino is massless. Chosen for consistency with information of that era.
- (B-L) is a symmetry of the Standard Model

Neutrino interactions

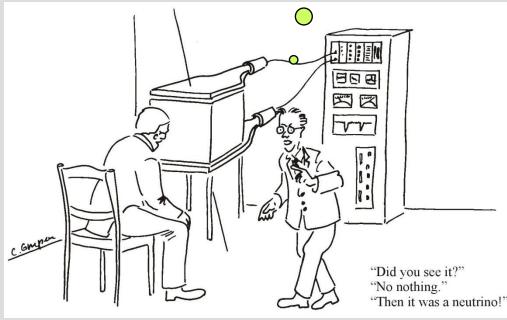
CC: Charged current

$$v_e + n \rightarrow e + p$$

W[±] exchange


Did you see it?

No, Nothing!


Then it was a neutrino

NC: Neutral current

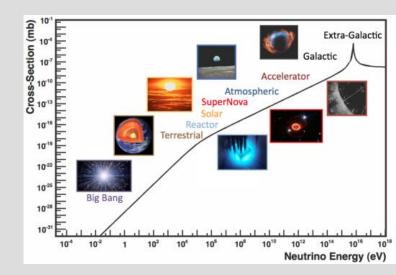
$$v_x + p \rightarrow v_x + p$$

 $v_x + n \rightarrow v_x + n \quad (x = e, \mu, \tau)$

Zexchange

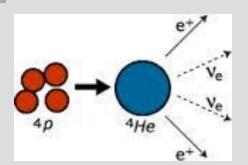
Neutrino Sources

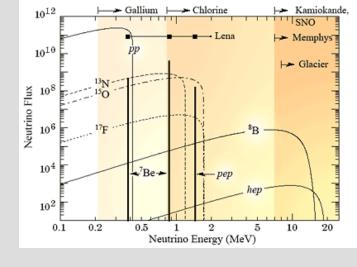
50 billion neutrinos/sec from the natural radioactivity of the earth


Experimentally observed:

E ~ 0.1 ~ 20 MeV; Flux ~10¹² /cm²/s

- Solar neutrinos (Fusion reactions)
- Atmospheric neutrinos (pion decay)
- Accelerator neutrinos (pion decay)
- Nuclear Reactor antineutrinos (Fission reactions)


Future:


• Long baseline expts such as DUNE, H2K

Solar neutrinos

- Sun generates heat and light through fusion reactions $4p \rightarrow {}^{4}\text{He} + 2 \text{ e}^{+} + 2 \text{ v}_{e} + 27 \text{ MeV} \quad (i)$
- Just like sunlight, solar neutrinos are reaching us (day & night!)
- Reaction (i) does not take place in one go. Rather, it is the consequence of a cycle of reactions, e.g.

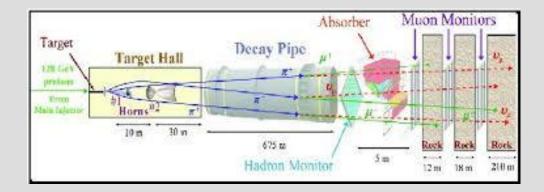
$$p + p \rightarrow {}^{2}H + e^{+} + \nu_{e} \leftarrow pp \ neutrinos$$

The v_e energy spectra from these reactions are well-known.

• Robust prediction of the number of solar neutrinos reaching the earth as a function of energy is possible. These have been detected by several expts. But ...

Reactor neutrinos

- Nuclear power stations run on fission reactions.
- A heavy nucleus, such as Uranium or Plutonium, breaks into lighter nuclei and neutrons and other particles.
- A large flux of electron antineutrinos are produced.
- Energy in the few MeV range.


Daya Bay, China \Rightarrow

• Excellent source for neutrino experiments. France, China, Korea and other countries

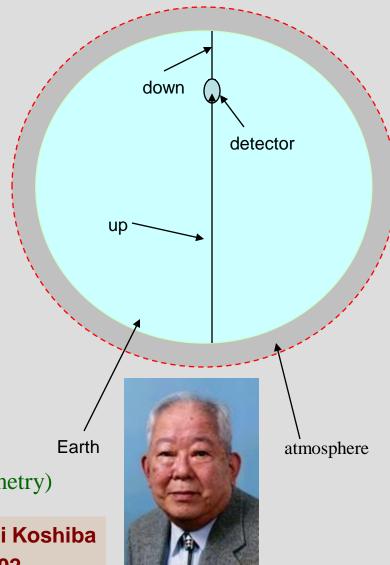
Neutrino beams

- High energy (few 1000 MeV) neutrinos are produced at accelerators. A high energy proton beam hits a target and produces many particles (among them π^{\pm})
- Pions decay to produce neutrinos $(\pi^+ \to \mu^+ + \nu_{\mu})$
- Neutrinos from CERN or Fermilab (USA)

Atmospheric neutrinos

Neutrinos are produced in the atmosphere from cosmic ray pion and kaon decays e.g. $(\pi \rightarrow \mu + \overline{\nu}_{\mu})$, $(\mu \rightarrow e^- + \overline{\nu}_e + \nu_{\mu})$ and the charge conjugate processes Typical energy ~ 1 GeV

Expectation: R =(#
$$\nu_{\mu}$$
+ $\overline{\nu}_{\mu}$)/(# ν_{e} + $\overline{\nu}_{e}$) ≈ 2


SuperK:
$$R_{obs}/R_{mc} = 0.635\pm0.035\pm0.083$$

(sub-GeV)
= $0.604\pm0.065\pm0.065$
(multi-GeV)

T. Kajita

No. of v_{μ} depends on zenith angle (up-down asymmetry)

No such effect for v_e (1997)

Masatoshi Koshiba Nobel: 2002

Solar neutrino results

Expt	Obsvd/Predn	E _{th} (MeV)	Type
Homestake (from 1968)	0.335 ± 0.029	0.8 v _e -	Radiochemical + $^{37}\text{Cl} \rightarrow ^{37}\text{Ar} + \text{e}^- \text{(CC)}$
GNO, SAGE, Gallex	0.584 ± 0.039	0.233	Radiochemical $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-(CC)$
K, SuperK (1989)	0.459 ± 0.017	5.0	Water Cerenkov $v_e + e \rightarrow v_e + e (CC + NC)$
SNO CC	0.347 ± 0.027	6.75	Cerenkov $v_e + d \rightarrow p + p + e^- (CC)$

Ray Davis Nobel: 2002

Solar neutrino results

Expt	Obsvd/Predn	E_{th} (MeV)) Type
Homestake (from 1968)	0.335 ± 0.029	0.8 v _e	Radiochemical $+ {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^- \text{ (CC)}$
GNO, SAGE, Gallex	0.584 ± 0.039	0.233	Radiochemical $v_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-(\text{CC})$
K, SuperK (1989)	0.459 ± 0.017	5.0	Water Cerenkov $v_e + e \rightarrow v_e + e (CC + NC)$
SNO CC	0.347 ± 0.027	6.75	Cerenkov $v_e + d \rightarrow p + p + e^-$ (CC)
McDonald			e i i i (i i)
SNO NC	1.008 ± 0.123	2.2	$v + d \rightarrow n + p + v (NC)$

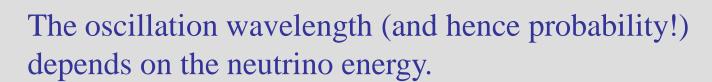
February 03, 2019

RINP2 (Visva Bharati)

Neutrino oscillations

Neutrino oscillations

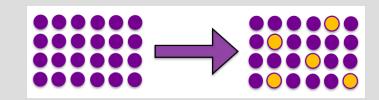
- A quantum mechanical phenomenon relying on the superposition principle.
- In the oscillation of a pendulum, the bob alternately reaches the left and right end-points of the trajectory.
- During travel, a v_e becomes a v_μ and then back again to a v_e . This oscillation process continues.


Prob(
$$v_e \rightarrow v_{\mu}$$
, L) = 4 c² s² sin²(π L/ λ)

$$c = cos\theta$$

 $s = sin\theta$

 $\begin{aligned} \text{Maximal mixing} \\ \theta = \pi/4 \end{aligned}$


 $\pi/2$

 $3\pi/2$

Neutrino oscillations (contd.)

How does this help?

- Solar neutrino detectors look for ν_e. Some (Cl, Ga and SNO CC) are totally insensitive to ν_μ, ν_τ. SK has a smaller sensitivity (about 1/6) to other types. Only SNO NC is equally sensitive to all.
 If some ν_e have oscillated to a ν_μ when they reach the detector then they will not be seen (except in SNO NC). Count will be less.
- Atmospheric v_e , v_μ are detected through the e^- , μ^- they produce. At their higher energies, the v_e hardly oscillates, while the v_μ oscillates to v_τ , which do not produce μ^- . This reduces the measured ratio R. Also, the zenith angle dependence seen for v_μ is explained.
- Other experiments (at nuclear reactors and using neutrino beams) have seen clear signals for neutrino oscillation.

Some Quantum Mechanics

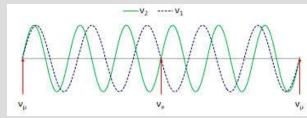
Stationary states: $H | \Psi_n \rangle = E_n | \Psi_n \rangle$

Time evolution: $|\Psi_n(t)\rangle = \exp(-iE_n t) |\Psi_n(0)\rangle$ (only a phase)

General state (t=0): $|\Psi(0)\rangle = \sum_{n=0}^{\infty} a_n |\Psi_n(0)\rangle$ General state (any t): $|\Psi(t)\rangle = \sum_{n=0}^{\infty} a_n \exp(-iE_nt) |\Psi_n(0)\rangle$ Phase differences $\sim (E_i - E_j)t \rightarrow \text{physics consequences}$

Neutrino stationary states: $|v_1\rangle$, $|v_2\rangle$ (mass eigenstates)

Neutrino flavour eigenstates: $|v_e\rangle$, $|v_\mu\rangle$


Mass \leftrightarrow Flavour states: $|v_e\rangle = |v_1\rangle \cos\theta + |v_2\rangle \sin\theta$ $|v_u\rangle = -|v_1\rangle \sin\theta + |v_2\rangle \cos\theta$

Quantum Mechanics of neutrino oscillations (contd.)

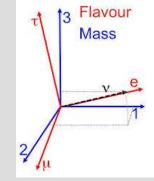
$$|v_e| > \text{produced at } t = 0 \Rightarrow |\Psi(0)| > = |v_e| > = |v_1| > \cos \theta + |v_2| > \sin \theta$$

At a later time: $|\Psi(t)| > = |v_1| > \cos \theta e^{-iE_1t} + |v_2| > \sin \theta e^{-iE_2t}$

$$Prob(\nu_e \rightarrow \nu_{\mu}, L) = |\langle \nu_{\mu} | \Psi(t) \rangle|^2 = 4 c^2 s^2 |e^{-iE_1 t} - e^{-iE_2 t}|^2$$

Neutrinos are ultra-relativistic:
$$p >> m \Rightarrow E_i = (p^2 + m_i^2)^{1/2} \approx p + m_i^2/2p$$

 $(E_1 - E_2)t = (m_1^2 - m_2^2)t/2p \equiv (\Delta/2p)t = \Delta L/2E$


Prob(
$$v_e \rightarrow v_{\mu}$$
, L) = 4 c² s² sin²($\pi L/\lambda$) where $\lambda = 4\pi E/\Delta$

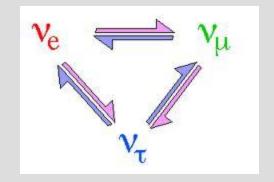
$$\lambda = 4\pi E/\Delta$$

Survival Prob. = Prob(
$$v_e \rightarrow v_e, L$$
) = 1 - Prob($v_e \rightarrow v_\mu, L$)

More on *v* oscillations

- Essential ingredients: (i) $\Delta = m_1^2 m_2^2 \neq 0$, (ii) $\sin \theta \neq 0$.
- Matter effect: Mass is a measure of inertia.
 In a medium inertia (and hence mass) changes.
 Neutrino mass and mixing affected by medium (MSW effect)
- Solar neutrino problem: $\Delta = 6.07 \times 10^{-5} \text{ eV}^2$ (ii) $\tan^2 \theta = 0.41$ (Best fit -- MSW LMA) v_e oscillates to another 'active' neutrino (SNO NC ≈ 1)
- Atmospheric neutrino anomaly: $\Delta = 3 \times 10^{-3} \text{ eV}^2$ (ii) $\sin^2 2\theta = 1$ (Best fit)

$$v_{\mu}$$
 oscillates to v_{τ}


$$m_e = 5,00,000 \text{ eV}$$

Three neutrino mixing matrix

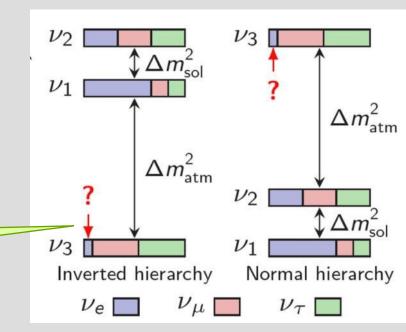
Two flavour mixing:

$$\mathbf{U} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

In reality there are three flavours (3 angles, one phase):

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}.$$

The phase δ signals CP non-conservation All three mixing angles must be non-zero for CP-violation $\theta_{13} \sim 9^0$ (2012) Daya Bay and RENO experiments



Three neutrino mass ordering

Solar neutrinos: $m_2^2 - m_1^2 > 0$:

From atmospheric neutrinos, only $|m_3^2 - m_1^2|$ is known

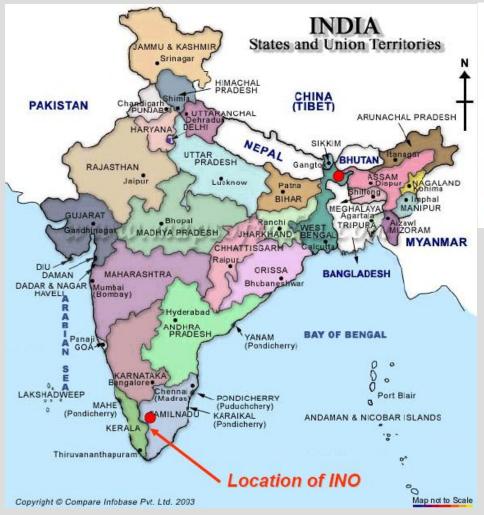
 $\theta_{13} \neq 0$?

Normal mass ordering?

or

Not known!

Inverted mass ordering?



Open issues

- Standard model (SM) of particle physics has massless neutrinos.
- Oscillations signal mass difference. What is the neutrino mass?
- What is the mass ordering? Is there CP-violation?
- Is the neutrino its own anti-particle ⇒ Majorana neutrino!
- New physics is needed if $m_v \neq 0$?. Many new ideas.

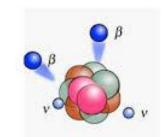
India-based Neutrino Observatory

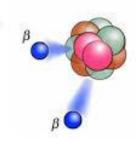
Pottipuram: 9°57'N, 77°16'E (Bodi Hills)

Near TamilNadu-Kerala border

1km rock coverage

V.M. Datar

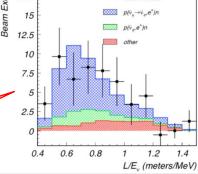

Majorana Neutrino?



- Can the neutrino be its own anti-particle? ($v \equiv v^c$?) The photon is its own anti-particle. (Also π^0)
- In such an event, lepton number is not conserved!
- A consequence ⇒ Neutrino-less double beta decay (0v2β process)

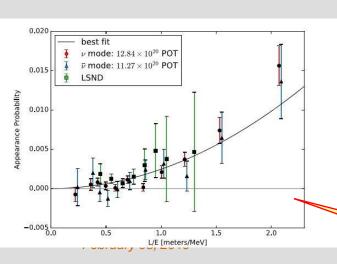
P.B. Pal, V. Nanal, A. Shrivastava

- Normal double beta decay (2v2β): X → Y + 2 e⁻ + 2v_e
- Neutrino-less double beta decay $(0v2\beta)$: X \rightarrow Y + 2 e⁻ $(\infty < m_v >^2)$
- Look for peak in 2e⁻ total energy
- Current limit <m_v> < 0.2 eV.



Sterile neutrino?

Prob($\nu_{\mu} \rightarrow \nu_{e}$, L) = 4 c² s² sin²(Δ L/4E) (Δ L/4E) should not be too small nor too large



 $\Delta = m_2^2 - m_1^2$ is fixed by the neutrino masses \Rightarrow This fixes the region of (L/E) to which experiment should be sensitive.

Conversely observation of oscillations at a certain (L/E) \Rightarrow Indicative of a certain (msy₂² - m₁²)

LSND Experiment (1995) used a ν_{μ} beam from π^+ decay and observed oscillations. $L = 30 \text{ m}, 36 \text{ MeV} \le E \le 52.8 \text{ MeV}$ For this $(L/E) \Rightarrow \Delta \cong 1 \text{ -} 10 \text{ eV}^2$

Is this result correct?

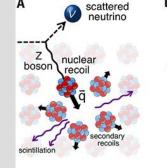
MiniBooNE (2018) with L \sim 0.5 km and 200 MeV \leq E \leq 1250 MeV get similar results

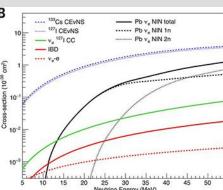
Note (L/E) is similar. 4th sterile neutrino?

M.R. Janani

MiniBooNE + LSND

Neutrino-Nucleus scattering (COHERENT Expt)

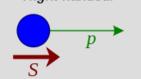

- This is **not** an oscillation phenomenon.
- Normally we consider neutrinos scattering off electrons or perhaps quarks.
- Neutrino-Nucleus elastic scattering (much like Dark Matter detection)

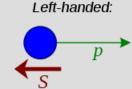

B. Mukhopadhyaya

Here, neutrinos scattering coherently off nuclei. Scattering mediated by Z-boson exchange. Energy must be low (< 50 MeV) so that the wavelength is comparable to the nuclear size.

The cross section $\propto N^2$, where N is the no. of neutrons in the nucleus

Pulsed beam (helps background estimation) Small-sized detector (14.6 kg) Csl scintillator, 6.7σ signal E ~ 16 – 53 MeV





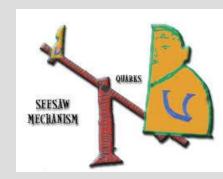
Fermion mass

Fermions have spin! Left- and right-handed fermions:

$$\psi = \psi_L + \psi_R$$

Fermion mass couples left to right:

$$m \overline{\psi} \psi = m(\overline{\psi}_R \psi_L + \overline{\psi}_L \psi_R)$$


- Standard Model: There is no right-handed neutrino.
- If there is only left-handed (or right-handed) component then m=0.

How to get $m_v \neq 0$?

- The mundane way is to add a v_R to the SM.
- This solves the problem but has no explanation of the smallness of m_v.
- This is the major hurdle in neutrino model building. To explain the smallness, one always needs new physics associated with some heavy scale, M (See-saw!). For Majorana mass, lepton number violation is also needed.
- Generic form of see-saw: m_v = (const)/M

N Khan

Simplest new physics

- Left-right symmetric model $\Rightarrow v_R$ required by symmetry.
- Nature is parity violating. Left-right symmetry is broken at a high energy scale, M_R .
- Neutrino mass matrix:

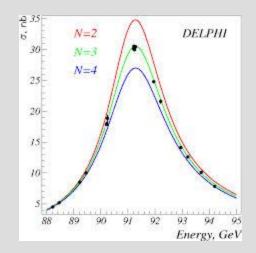
$$\begin{bmatrix} 0 & m \\ m & M_R \end{bmatrix} \qquad \qquad M_R \gg m$$

- Two Majorana neutrinos: v_L (mass m_v), v_R (mass M_R)
- See-saw mass formula: $m_v = (m^2)/M_R$.
- Pati-Salam model and other grand unified theories contain left-right symmetry.
- How to test for M_R?

Physics Nobel Prize 2015

Takaaki Kajita (Japan) &

Arthur B. McDonald (Canada)


For the discovery of neutrino oscillations which shows that neutrinos have mass

Looking Ahead

- Mixing between three neutrinos
- CP-violation in lepton sector
- Majorana neutrinos
- Sterile neutrinos
- Long baseline experiments
- INO
- Neutrino mass matrix
- New physics: new interactions, symmetries, etc.
- Astroparticle physics: e.g. Supernova, Nucleosynthesis

