Ximantis Forecasting

ADVANCED MACHINE LEARNING MEETS MATHEMATICS

Re/discovering hidden dynamics – a ML approach

ALEXANDROS SOPASAKIS

Center for Scientific and Technical computing LUNARC Lund University

TRAFIKVERKET

SPORT ADMINISTRATION

- Image processing
- Data generation for training
- ML training
- Real-time computations with ML

- Image processing needed or not?
- Data generation for training
- ML training
- Real-time computations with ML

- Image processing needed or not?
- Data generation for training collection of ideas
- ML training
- Real-time computations with ML

- Image processing needed or not?
- Data generation for training collection of ideas
- ML training several choices
- Real-time computations with ML

- Image processing needed or not?
- Data generation for training collection of ideas
- ML training several choices
- Real-time computations with ML a how to perspective

But first a few words about Ximantis

• What we do:

forecasting traffic evolution & congestion

- High resolution predictions in real-time of the exact location and future time of traffic congestion - for a whole city
- Requires:
 - lots of historical data +
 - current data streaming and
 - real-time processing of all incoming information

How are such fast computations really done? Here comes the math...

• Hybrid system of

- Stochastic (patented) traffic model +

- ML model

Main Statistical Mechanics Concepts Describing the interacting vehicle system

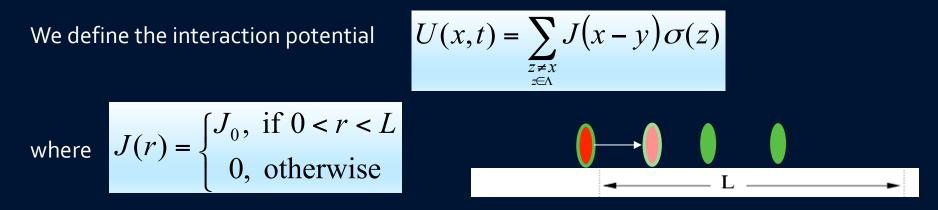
We let Λ denote a lattice of N cells. and consider the microscopic spin-like variable $\{\sigma_t\}_{t\geq 0}$ on Λ We denote by S(x) the spin at location x

While we denote by $\sigma := \sigma_t$ the complete configuration of the lattice at time t.

Configuration σ is an element of the configuration space and we write $\sigma = \{\sigma(x) : x \in \Lambda\}$

$$\boldsymbol{\Sigma} = \{0,\!1\}^{\Lambda}$$

Lattice-free Arrhenius rates


Spin – flip rate for particles adsorbing/desorbing from/to the problem domain. The rates c are calculated from ¹

$$c(i,\sigma) = \begin{cases} c_d \exp(-\beta U(i,\sigma)) & \text{if } \sigma(i) = 1 \\ c_a w(i) & \text{if } \sigma(i) = 0 \end{cases}$$

where
$$w(i) = \begin{cases} |E_i| - |V| & if |E_i| > |V| \\ 0 & otherwise \end{cases}$$

$$\underbrace{E_{k+1}}_{B_1} \underbrace{E_{k+2}}_{B_2} \underbrace{E_{k+3}}_{B_3} \underbrace{\bullet \bullet \bullet E_{k+l-1}}_{B_k} \underbrace{E_{k+l}}_{B_k} \Lambda$$

Incorporating the Physics and Creating the ASEP

and **parameter** *L* denotes the range of interactions.

Here **parameter** *Jo* denotes the strength of the interactions.

This potential enforces:

- Vehicles do not move backwards
- Local effect of the interactions

Building the continuous time, space Markov Chain Microscopic Arrhenius Spin-Exchange Dynamics

We introduce a lattice-free Arrhenius spin-exchange rate $c(x,y,\sigma)$,

$$c(x, y, \sigma) = \frac{1}{\tau_0} \sigma(x) [1 - \sigma(y)] w(y) e^{-U(x, \sigma)}$$

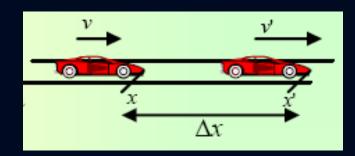
where **parameter** τ_0 denotes the characteristic time of the process and U is the interaction potential.

Incorporating interactions & multi-lane motion

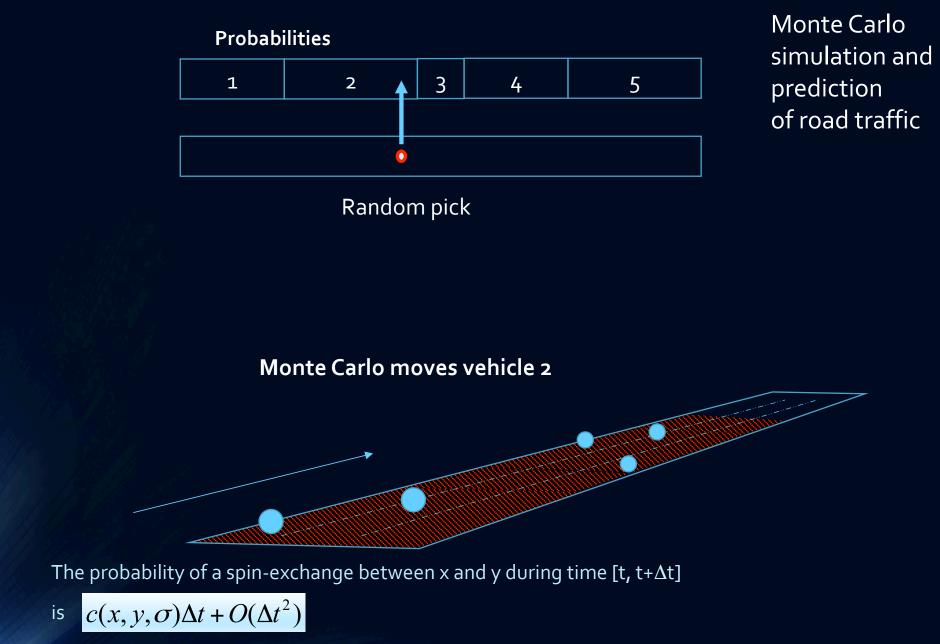
Let's look once again at the rate functional

$$c(x, y, \sigma) = \frac{1}{\tau_0} \sigma(x) [1 - \sigma(y)] w(y) e^{-U(x, \sigma)}$$

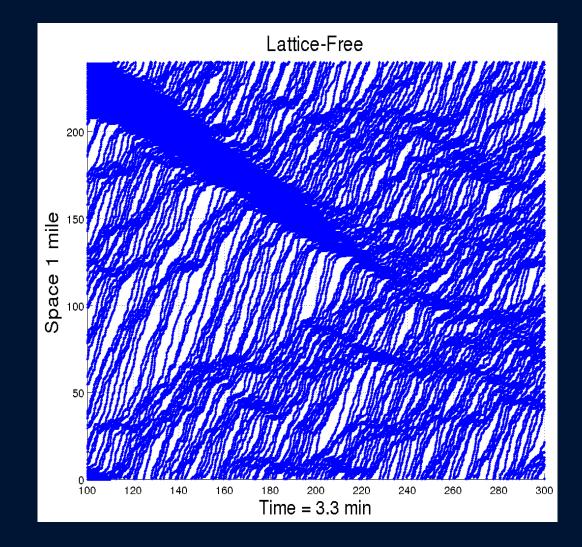
We incorporate lane-changing via an additional anisotropy type potential. Thus our **total interaction potential** now consists of:


$$U_{T}(x) = U(x) + U_{a}(x) \text{ where } U_{a}(x) = \sum_{y=nn} \psi(x, y)(1 - \sigma(y))$$

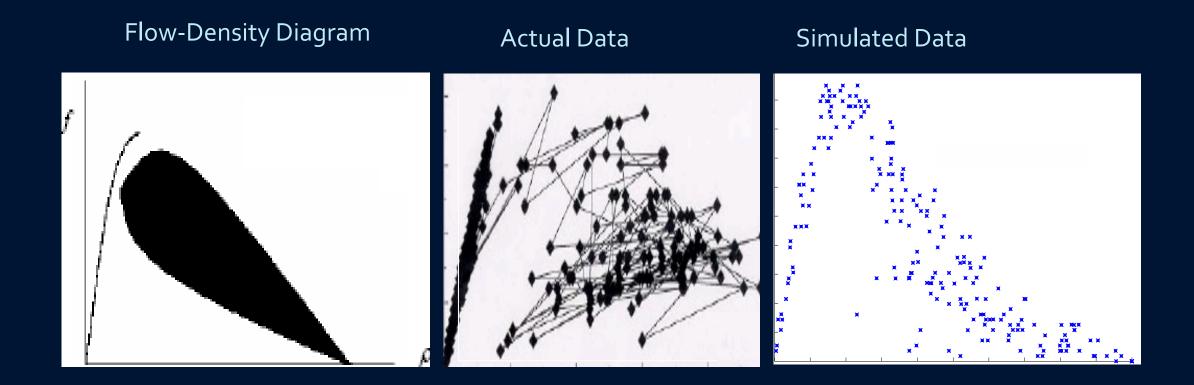
with $\psi(x, y) = \begin{cases} k_{l} \text{ if } y = \text{left} \\ k_{r} \text{ if } y = \text{right} \\ k_{f} \text{ if } y = \text{forward} \end{cases}$


Free Parameters and Calibration

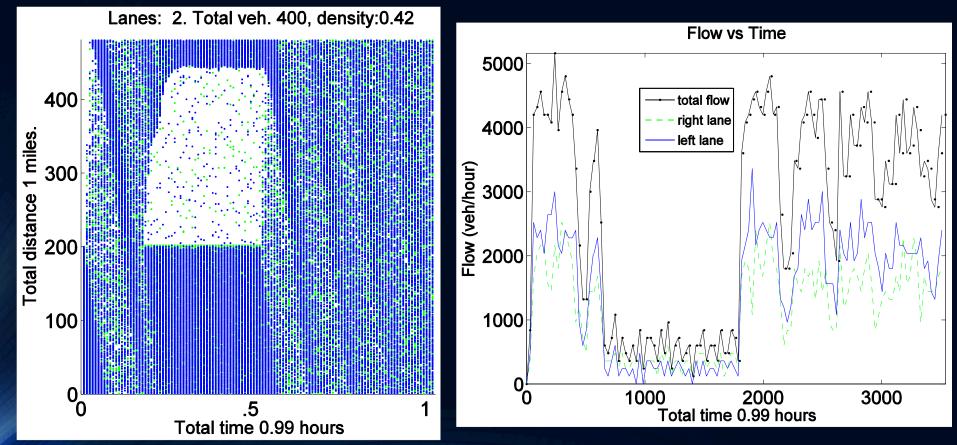
•


.....

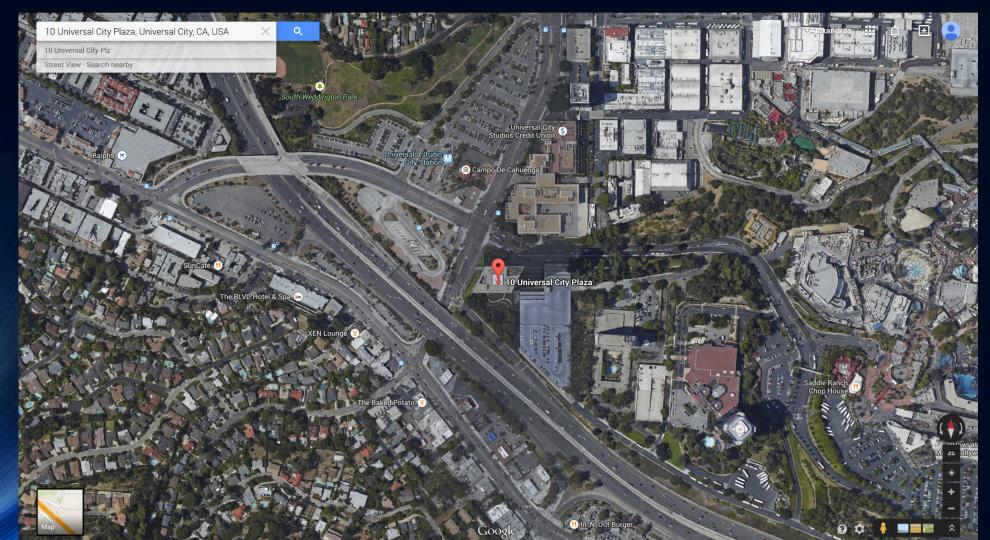
- The model is characterized by the following three undetermined parameters:
- au_0 the characteristic time of the stochastic process
- J_0 the strength of the interactions
- *L* the interaction potential range



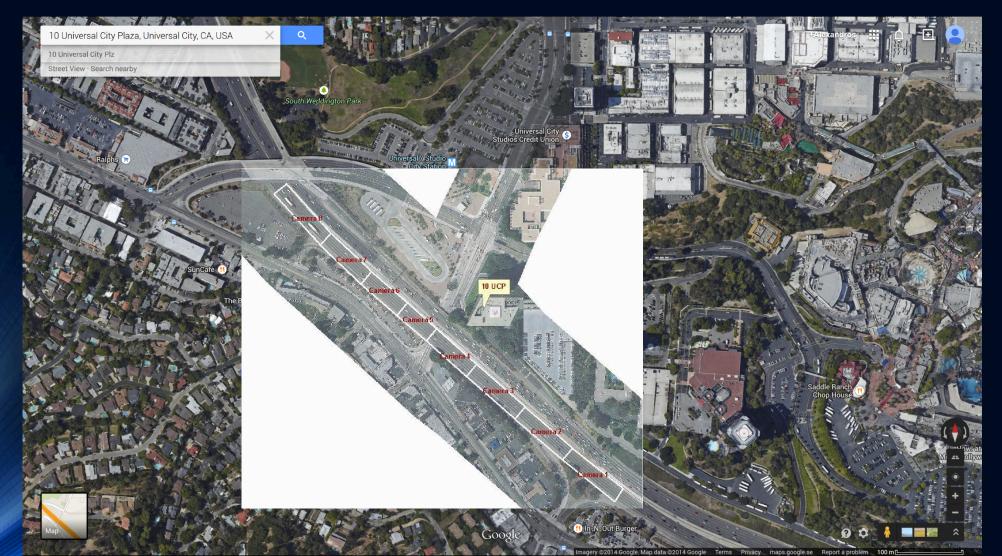
Validation – Advanced Features Timely breaking/returded acceleration



Validation Fundamental Diagram


Validation: an incident

- Assume a 2-lane highway
- After some time Lane 1 is blocked due to an accident

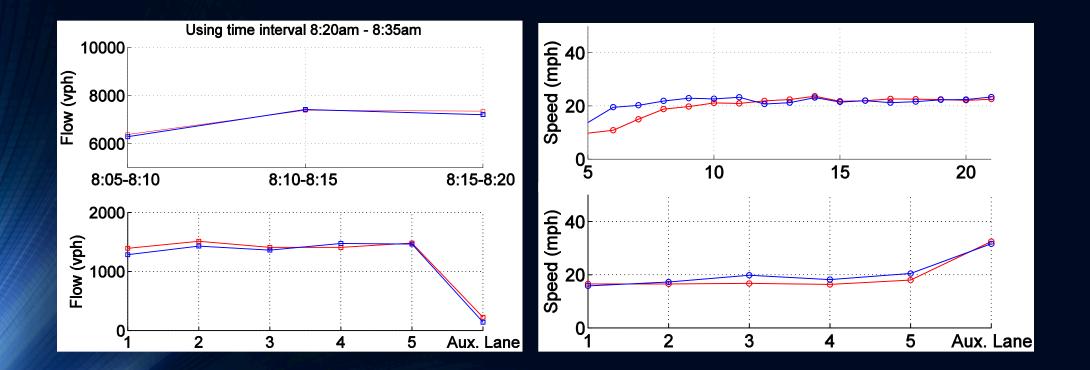

Test case: a real highway – the NGSIM project

- Highway U.S. 101 near Los Angeles, in California
- 5 lanes with entrances and exits.

Test case: a real highway – the NGSIM project

- Highway U.S. 101 near Los Angeles, in California
- 5 lanes with entrances and exits.

A Monte Carlo Multi-Lane, Multi-Class Vehicle simulation...


Real Data

Test case: simulations vs reality

- Highway U.S. 101, Los Angeles, California
- 5 lanes with entrances and exits.
- 15 minutes intervals of very detailed rush hour data: 8:05am to 8:20am

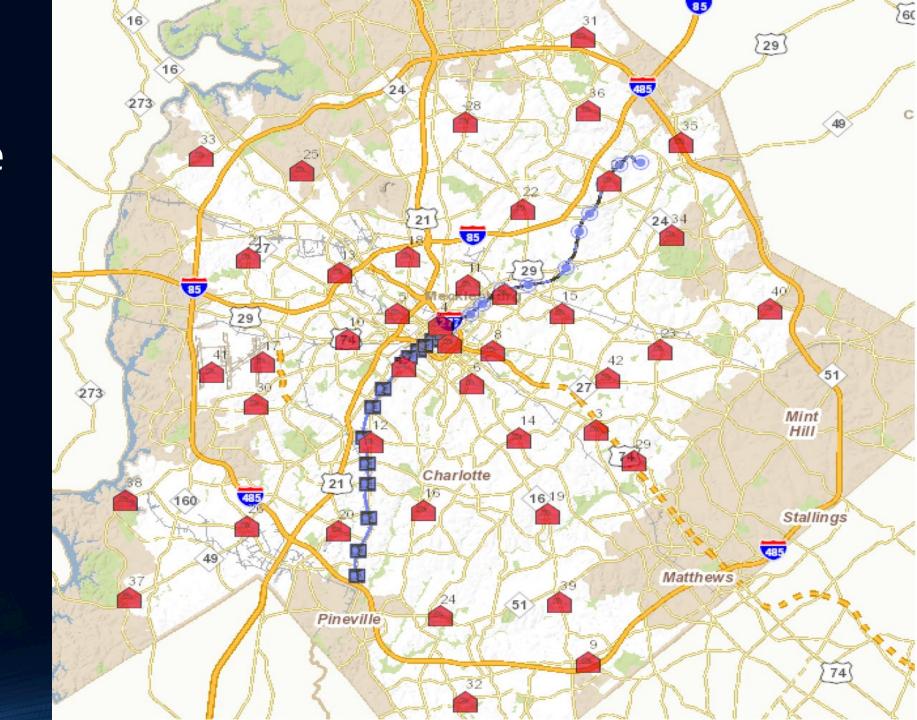
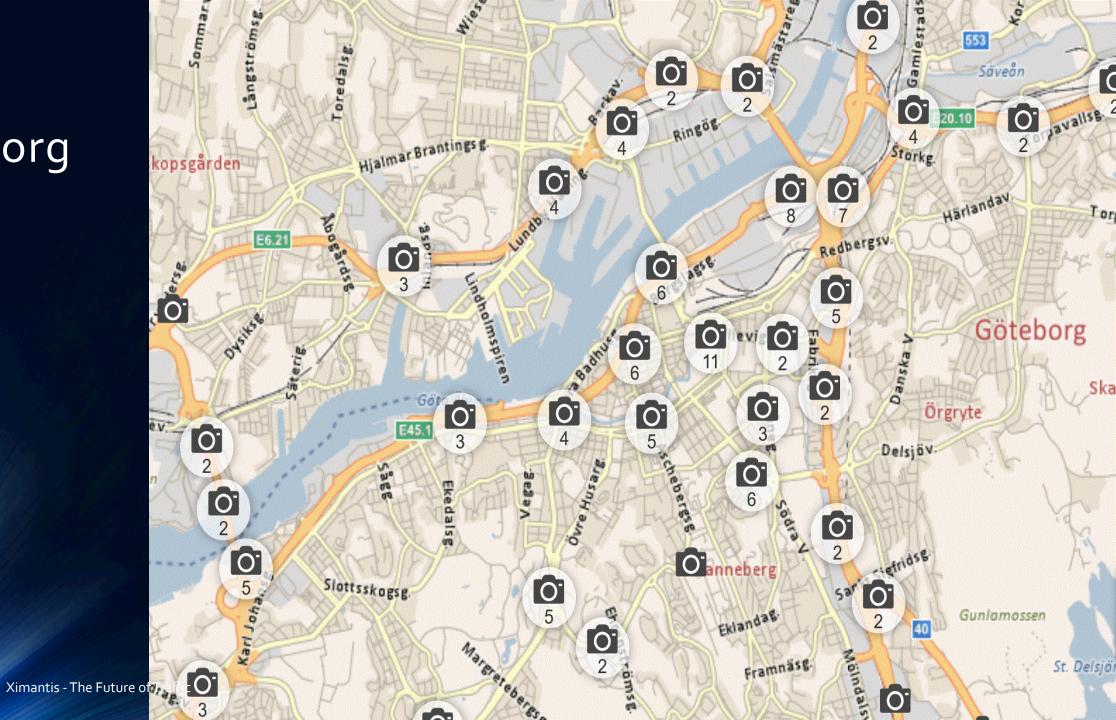


Image Processing – the data

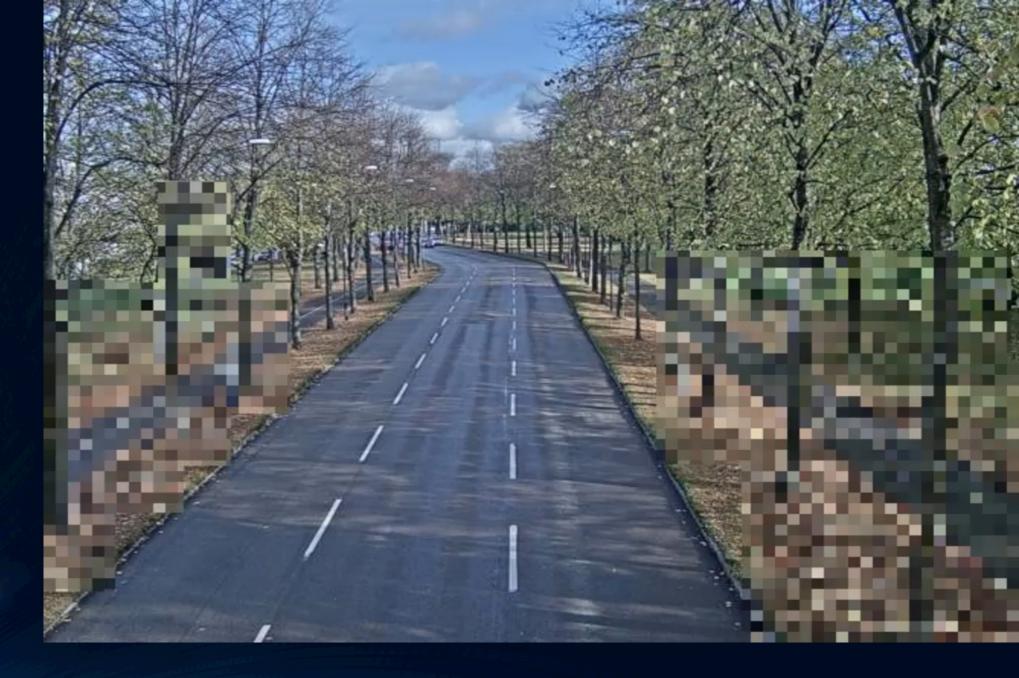
Images or Video from

• Charlotte,

Charlotte


Ximantis - The Future of Traffic

Data Collection


Images or Video from

- Charlotte,
- Goteborg

Goteborg

Images

Data Collection

Images or Video from

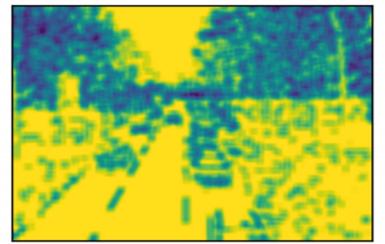
- Charlotte,
- Goteborg,
- Stockholm
- etc

Image Processing and Counting

• Images

Images

Threshold with ROI mask


Ximantis - The Future of Traffic

Images

Capacity: 30.689907524449467% Original Cany edges

Blur

Threshold with ROI mask

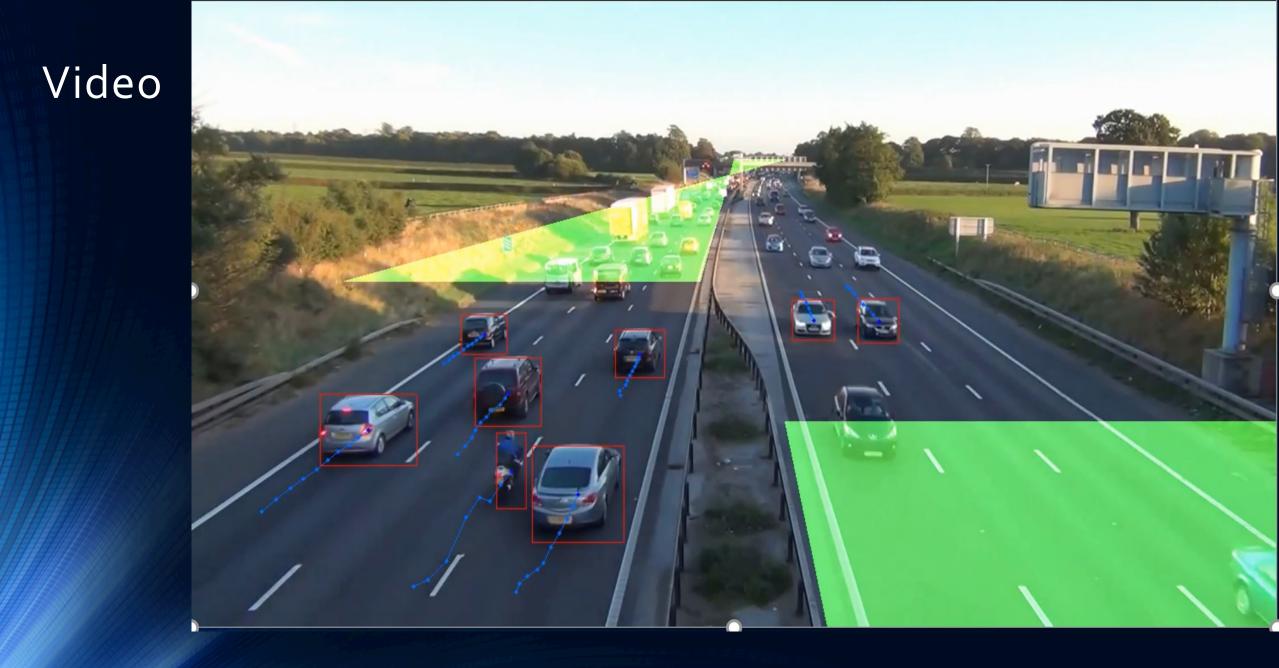
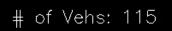
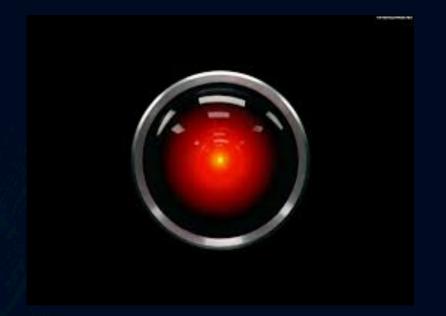


Image Processing and Counting


- Images
- Video

Ximantis - The Future of Traffic


Video

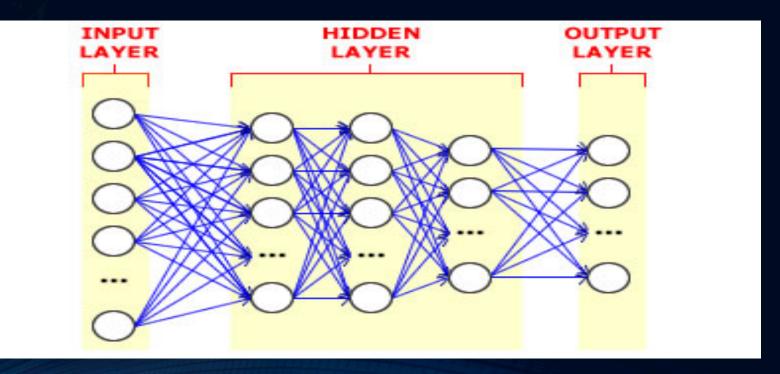
Generate Data in Real Time at our AWS cloud

2	13	437 11 437 11	118846980200	$16.467 \\ 16.447$	35.381	6451137.641	1873344.962	14.5	4.9	2 40.00	0.00	2	0 0	0.00	0.00
2	14	437 11 437 11	118846980200 118846980300 118846980400 118846980500 118846980600 118846980600	16.447	39.381	6451140.329 6451143.018 6451145.706	1873342.000	14.5	4.9	2 40.00 2 40.00	0.00 0.00 0.00	2	0 0	$0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.00
2	16	437 11	118846980500	16.426 16.405	47.380	6451145 706	1873339.038 1873336.077 1873333.115 1873330.153	14.5	4.9	2 40.00	0.00	2		0.00	0.00
2	16 17	437 11 437 11	118846980600	16.385 16.364	51.381	6451148.395 6451151.084	1873333.115	14.5	4.9	2 40.00	ŏ.ŏŏ	2	ŏ ŏ	0.00 0.00	0.00
2		437 11 437 11 437 11	118846980700	16.364	55.381	6451151.084	1873330.153	14.5	4.9	2 40.00	0.00	2	0 0	0.00 0.00 0.00	0.00
2	19	43/ 1	L18846980800	16.344	59.381	6451153.772	1873327.192	14.5	4.9	2 40.00	0.00	2	0 0	0.00	0.00
2	20	437 11	118846980900	16.323 16.303	67.383	6451156.461 6451159.149	1873324.230	14.5	4.9 1 0	2 40.02 2 40.03	0.25	2		0.00	0.00 0.00
2	22	437 11	118846981100	16.282	71.398	6451161.838	1873318.307	14.5	4.9	2 39.93	-1.63	2	0 13	0.00 0.00	0.00
2	18 19 20 21 22 23 24 25	437 11	118846981000 118846981100 118846981200 118846981200	16.262	75.401	6451164.546	1873327.192 1873324.230 1873321.268 1873318.307 1873315.323	14.5	4.9	2 39.61	-4.54	2	0 13 0 13 0 13	0.00	0.00
2	24	437 11	118846981300	16.254	79.349	6451167.199			4.9	2 39.14	-5.73	2	0 13	0.00	0.00
2	25	437 11	118846981400 118846981500 118846981600	16.221	83.233	6451169.802	1873309.533 1873306.719 1873303.870 1873300.929	14.5	4.9	2 38.61	-5.15	2	U I3	0.00	0.00
2	26 27	437 11 437 11	118846981500	16.201 16.169	87.043	6451174 961	1873303 870	14.5	4.9 4 9	2 38.28	-1.01 3.73	2	0 13 0 13	0.00	
2	28	437 1	118846981700	16.204	94.683	6451177.613	1873300.929	14.5	4.9	2 38.78	4.86	2	0 13	0.00	0.00
2	28 29 30	437 11	118846981800	16.252	98.611	6451180.342	1873297.924	14.5	4.9	2 38.92	0.00	2	0 13	0.00	0.00
2	30		118846981900	16.339	102.560	6451177.613 6451180.342 6451182.980 6451185.537 6451188.021 6451190.424 6451192.757 6451195.109 6451197.462 6451199.814 6451202.167	1873294.961	14.5	4.9	2 38.54	-8.59	2	$\begin{array}{cccc} 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \end{array}$	0.00	0.00
2	3⊥ 32	437 11 437 11	118846982000 118846982100	16.400 16.430	106.385	6451185.537	18/3292.122	14.5	4.9	2 3/.51	-11.20	2	U 13	0.00	0.00
$\frac{2}{2}$	33	437 11	118846982200	16.435	113.628	6451190.424	1873286.817	14.5	4.9	2 35.50	-6.20	2	0 13	0.00	0.00
2	34	437 11	118846982200 118846982300 118846982400	16.478	117.118 120.600 124.096	6451192.757	1873284.247	14.5	4.9	2 35.08	-1.89	2	0 13 0 13 0 13 0 13 0 13 0 13	0.00	0.00
2	35	437 11	118846982400	16.520	120.600	6451195.109	1873281.656	14.5	4.9	2 34.96	0.18	2	0 13	0.00	0.00
2	36 37 38		118846982500	16.562 16.605	124.096	6451197.462	1873279.065	14.5	4.9	2 34.98	0.25	2	0 13	0.00	0.00
2	37	437 11 437 11	118846982700	16.647	127.597 131.099	6451202 167	1873273882	14.5	4.9 4 9	2 35.00	-0.20	2	$\begin{array}{c} 0 \\ 1 \\ 3 \end{array}$	0.00	
2	39	437 11	118846982700 118846982800	16.691	134.595	6451204.519	1873271.290	14.5	4.9	2 34.98	-0.02	2	0 13 0 13	0.00	0.00
2	39 40	437 11	118846982900	16.727	138.081	6451206.879	1873268.700	14.5	4.9	2 35.10	1.95	2	0 13	0.00	0.00
2	41 42 43		118846983000	16.796	141.578	6451209.191	1873266.113	14.5	4.9	2 35.49	5.55	2	0 13 0 13 0 13	$0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.00
2	42	437 11 437 11	118846983100	16./95 16.724	145.131 178 787	6451211.610 6451214 156	18/3263.514	14.5	4.9 / 0	2 36.20	8.99	2	U 13	0.00	0.00
2	44	437 11	118846983200 118846983300 118846983400 118846983500	16 588	152 559	6451199.814 6451202.167 6451204.519 6451206.879 6451209.191 6451211.610 6451214.156 6451216.824 6451219.616 6451222.548 6451225.462	1873258 213	14 5	49	2 38 12	9 30	2	0 13	0.00	0.00
2	44 45	437 11	118846983400	16.376	156.449	6451219.616	1873255.522	14.5	4.9	2 38.76	4.36	2	0 13 0 13	ŏ.ŏŏ	0.00
2	46	437 11	118846983500	16.064	160.379	6451222.548	1873252.829	14.5	4.9	2 38.95	-0.73	2	0 13	0.00	0.00
2	46 47 48	437 11	L18846983600	15.763	164.277	6451225.462	1873250.139	14.5	4.9	2 38.95	-1.15	2	0 13	Ŏ.ŎŎ	0.00
2	40 7 Q		118846983700 118846983800	15 226	168.150 172.044	6/51231 200	1073247.430 1873247.760	14.5	4.9 1 0	2 30.99 2 39 18	1.90	2	0 13	0.00	
2	49 50	437 11	118846983900	14.979	176.000	6451234.204	1873247.450 1873244.760 1873242.071 1873239.374	14.5	4.9	2 39.34	0.02	2	$\begin{array}{cccc} 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \\ 0 & 13 \end{array}$	0.00	0.00
2	51	437 11	118846984000	14.720	179.959	6451237.144	1873239.374	14.5	4.9	2 39.20	-3.52	2	0 13	0.00	0.00
2	52	437 11	118846984100	14.508	183.862	6451239.988	1873236.708	14.5	4.9	2 38.89	-3.28	2	0 13	0.00	0.00
2	53	437 11 437 11	118846984200 118846984300 118846984400 118846984500	14.331 14.240	187.716 191.561	6451242.770	1873236.708 1873234.057 1873231.336 1873228.494 1873225.539 1873222.554	14.5 14.5	4.9	2 38./3	-0.33	2	U I3	0.00	0.00 0.00
2	54 55	437 11	118846984400	14.240	195 455	6451245.501	1073231.330 1873228 494	14.5	4.9 4 9	2 30.00	5.49	2	0 13 0 13	0.00	0.00
2	56	437 11	118846984500	14.428	199.414	6451250.788	1873225.539	14.5	4.9	2 39.68	3.76	2	0 13	0.00	0.00
2	57	43/ 1	8846984600	14.540	203.417	6451237.144 6451239.988 6451242.770 6451245.501 6451248.125 6451250.788 6451253.489	1873222.554	14.5	4.9	2 39.94	1.29	2	0 13 0 13 0 13	0.00	0.00
2	58	437 11	118846984700	14.646	207.430	6451256.177	1873222.554 1873219.592 1873216.630	14.5	4.9	2 40.02	-0.22	2	0 13	0.00	0.00
2	59 60	437 1	118846984800	14.751	211.431 215.428	6451258.866	1873216.630	14.5	4.9 / 9		-0.21	2	0 13 0 13	0.00	
2	61_	Ximantis	118846984900 1 188 Future 0fdraf 118846985100	fic14.962	219_427	6451264 243	1873210 707	14.5	4.9	2 39 99	0.00	2	0 13	0.00	0.00
2	61 62	437 11	118846985100	15.067	219.427 223.462	6451264.243 6451266.932	1873210.707 1873207.745	14.5	4.9	2 39.99 2 39.65	0.00 -5.35	2	0 13 0 13	ŏ.ŏŏ	ŏ.ŏŏ

I am sorry Dave, I am afraid I cannot do that!

AI

Possible and effective because:


- Data
- Powerful computers

How it works:

- Pay attention and learn (powerful computers)
- Algorithm figures out Patterns (lots of data available to do that)
- Remember but not too much... (design the network properly and allow to forget!)

Neural Networks

- Neural Networks imitating how the brain synapses process information
- Basic components: input layer, hidden layers, output layer each comprised of nodes and connected by weights

Historical

- Fukushima (1980) Neo-Cognitron
- LeCun (1998) Convolutional Neural Networks (CNN)
 - Similarities to Neo-Cognitron
- Many layered MLP with backpropagation
 - Tried early but without much success
 - Very slow
 - Vanishing gradient
 - Relatively recent work demonstrated significant accuracy improvements by "patiently" training deeper MLPs with BP using fast machines (GPUs)
 - More general learning!
 - Much improved since 2012 with lots of extensions to the basic BP algorithm

Brief History of Neural Networks (NN)

- 1943: McCulloch & Pitts show that neurons can be combined to construct a Turing machine
- 1958: Rosenblatt shows that perceptrons will converge if what they are trying to learn can be represented
- 1969: Minsky & Papert showed the limitations of perceptrons, killing research for a decade

- 1985: The backpropagation algorithm revitalizes the field
 - Geoff Hinton et al
- 2006: The Hinton lab solves the training problem for DNNs

A few recent applications

tandwriting generation

http://www.cs.toronto.edu/~graves/handwriting.html

- Language identification (Gonzalez-Dominguez et al., 2014)
- Paraphrase detection (Cheng & Kartsaklis, 2015)
- Speech recognition (Graves, Abdel-Rahman, & Hinton, 2013)
- Handwriting recognition (Graves & Schmidhuber, 2009)
- Music composition (Eck & Schmidhuber, 2002) and lyric generation (Potash, Romanov, & Rumshisky, 2015)
- Robot control (Mayer et al., 2008)
- Natural language generation (Wen et al. 2015) (best paper at EMNLP)
- Named entity recognition (Hammerton, 2003)

Few Examples of Machine Learning Problems

Pattern Recognition

- Facial identities or facial expressions
- Handwritten or spoken words (e.g., Siri)
- Medical images
- Sensor Data/IoT

Optimization

• Many parameters have "hidden" relationships that can be the basis of optimization

Pattern Generation

Generating images or motion sequences

Anomaly Detection

- Unusual patterns in the telemetry from physical and/or virtual plants (e.g., data centers)
- Unusual sequences of credit card transactions
- Unusual patterns of sensor data from a nuclear power plant
 - or unusual sound in your car engine or ...

Prediction

- Future stock prices or currency exchange rates
- Network events

AI Learning?

- Learning is a procedure that consists of estimating the model parameters so that the learned model (algorithm) can perform a specific task
 - In Artificial Neural Networks, these parameters are the weight matrix (w_{i,i}'s)

• Types of learning considered here

- Supervised
- Unsupervised
- Semi-supervised learning
- Reinforcement learning

- Supervised learning
 - Present the algorithm with a set of inputs and their corresponding outputs
 - See how closely the actual outputs match the desired ones
 - Note generalization error (bias, variance)
 - Iteratively modify the parameters to better approximate the desired outputs (gradient descent)
- Unsupervised
 - Algorithm learns internal representations and important features

A typical machine learning task What is a "2"?

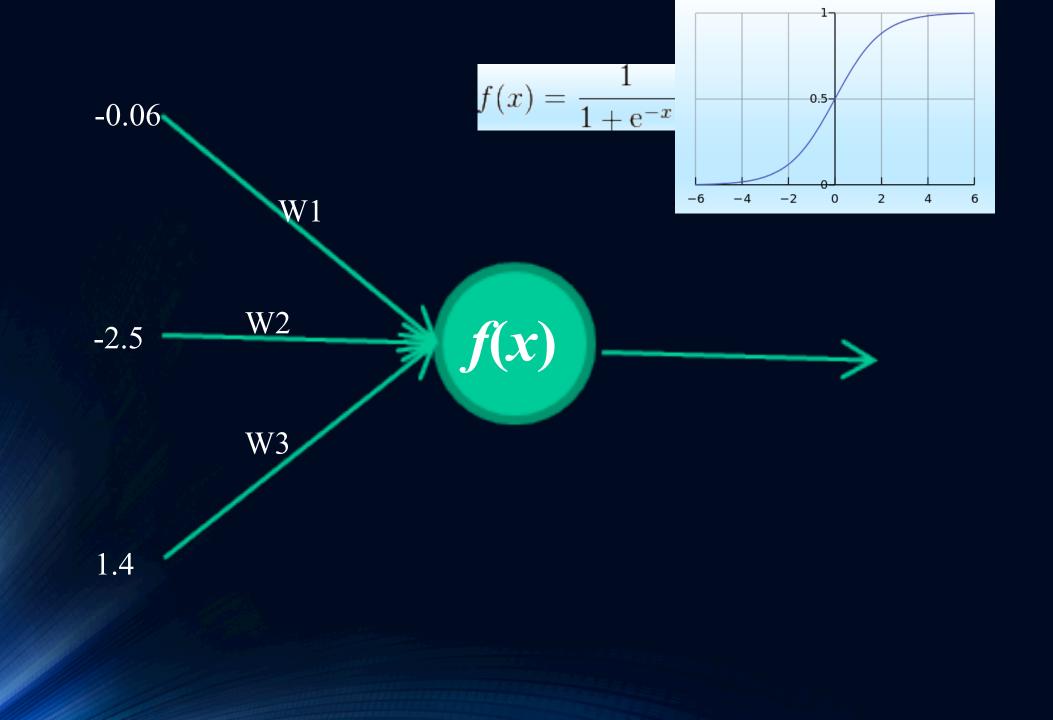
$$00011(1112)$$

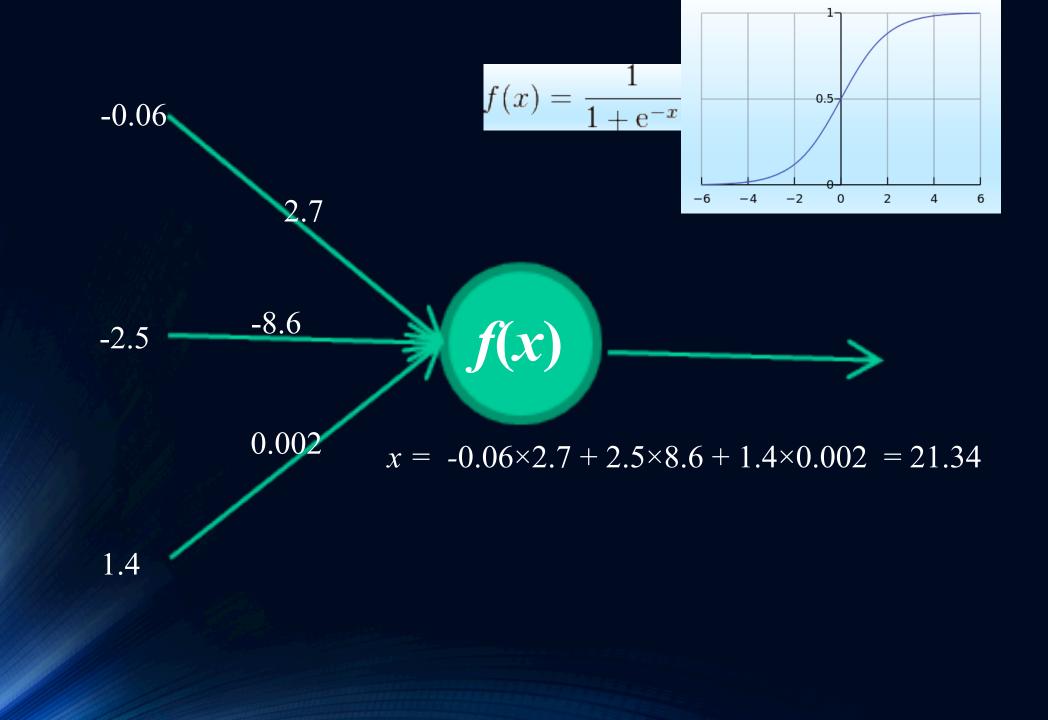
 02220223333
 3499495555
 42777388
 888594999

Supervised learning

- The desired response (function) of the data is given
 - You are given the correct answer together with the training data
- There are many types of supervised learning learning algorithms

These include: Artificial Neural Networks, Decision Trees, Ensembles (Bagging, Boosting, Random Forests, ...), k-NN, Linear Regression, Naive Bayes, Logistic Regression (and other CRFs), Support Vector Machines (and other Large Margin Classifiers), ...


 we will look later at an example which uses supervised learning on a deep neural network


Unsupervised learning

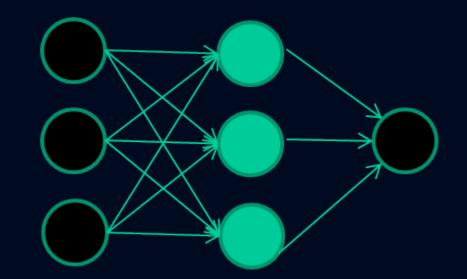
- Basic idea: Discover unknown structure in input data
- Data clustering and dimension reduction
 - More generally: find the relationships/structure in the data set
- No need for labeled data
 - The network itself finds the correlations in the data
- Learning algorithms include (again, many algorithms)
 - K-Means Clustering
 - Auto-encoders/deep neural networks
 - Restricted Boltzmann Machines
 - Hopfield Networks
 - Sparse Encoders
 - .

Deep learning NN?

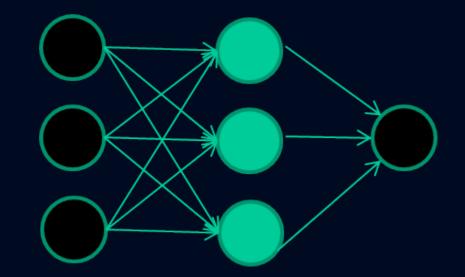
- Several hidden layers!
- Typically using convolutions to ascertain local structures
- Biological Plausibility e.g. Visual Cortex
- Amazing results... in speech, NLP, vision/multimodal work
- Does its own feature selection!
- The big players (Google, Facebook, Baidu, Microsoft, IBM...) are doing a lot of this
- What's new is hardware that can use these architectures at scale.
- Highly varying functions can be efficiently represented with deep architectures
 - Less weights/parameters to update than a less efficient shallow representation

 A dataset

 Fields
 class

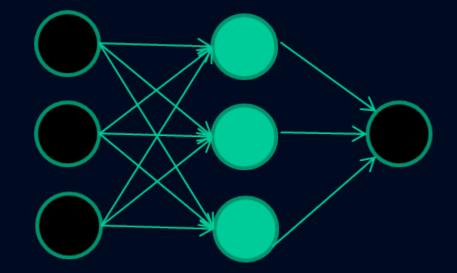

 1.4
 2.7
 1.9
 0

 3.8
 3.4
 3.2
 0

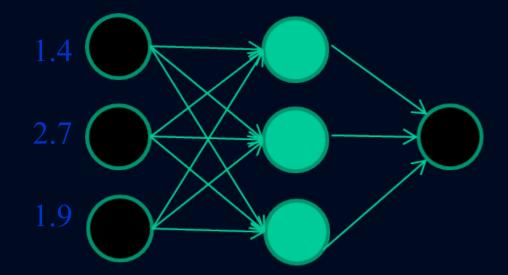

 6.4
 2.8
 1.7
 1

 4.1
 0.1
 0.2
 0

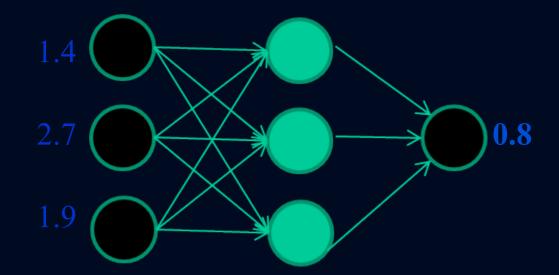
 etc
 ...
 ...



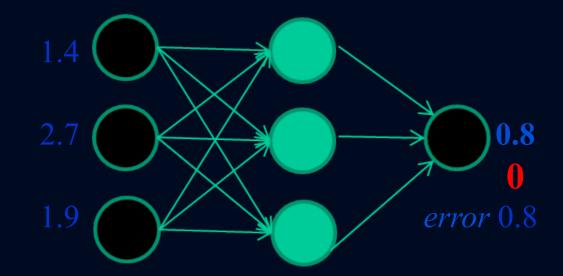
Training the neural network Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc ...


Training data Fields class 1.4 2.7 1.9 0 3.8 3.4 3.2 0 6.4 2.8 1.7 1 4.1 0.1 0.2 0 etc

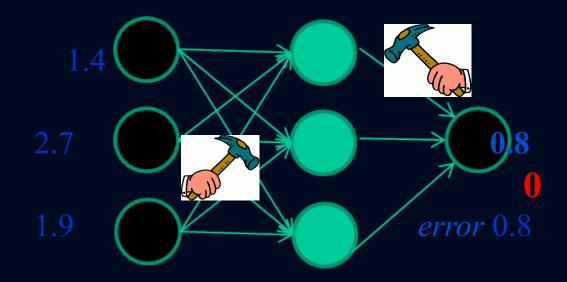
Initialise with random weights


Training			
Fields	<u>class</u>		
1.4 2.7	1.9	0	
3.8 3.4	3.2	0	
6.4 2.8	1.7	1	
4.1 0.1	0.2	0	
etc			

Present a training pattern


Trai						
_Fiel	Fields					
1.4	2.7	1.9	0			
3.8	3.4	3.2	0			
6.4	2.8	1.7	1			
4.1	0.1	0.2	0			
etc.	••					

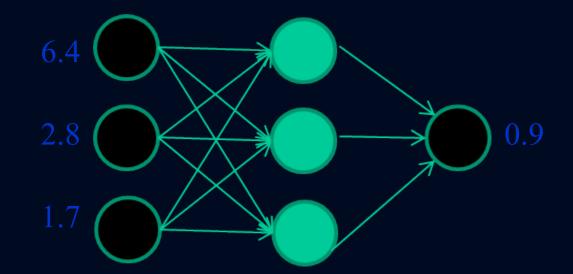
Feed it through to get output


Trair						
Field	Fields					
1.4	2.7	1.9	0			
3.8	3.4	3.2	0			
6.4	2.8	1.7	1			
4.1 (0.1	0.2	0			
etc	•					

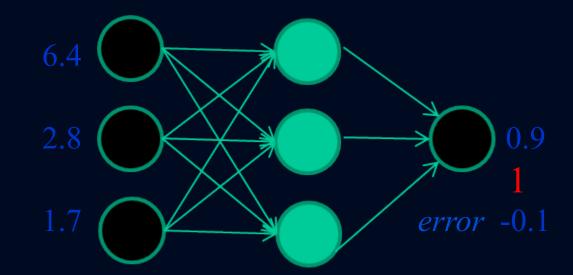
Compare with target output

Training data						
Fields	<u>class</u>					
1.4 2.7	1.9	0				
3.8 3.4	3.2	0				
6.4 2.8	1.7	1				
4.1 0.1	0.2	0				
etc						

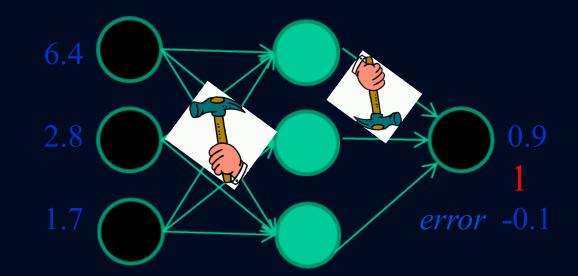
Adjust weights based on error



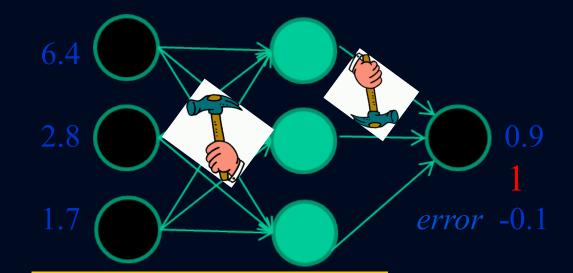
Present a training pattern



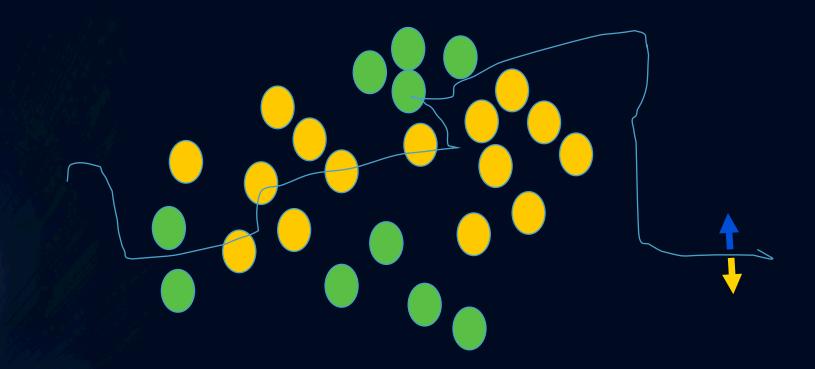
Feed it through to get output



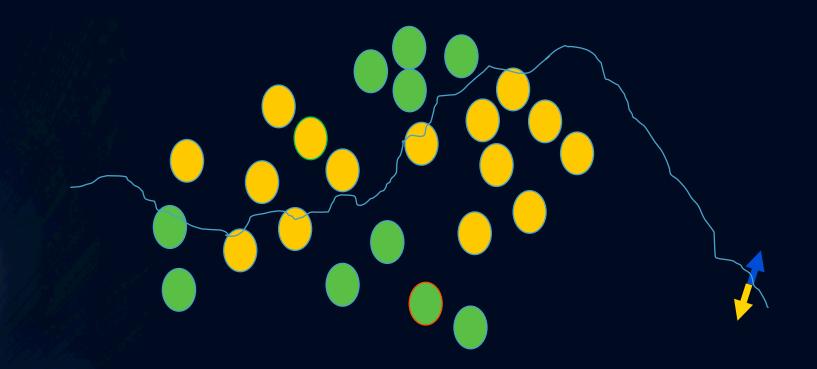
Compare with target output

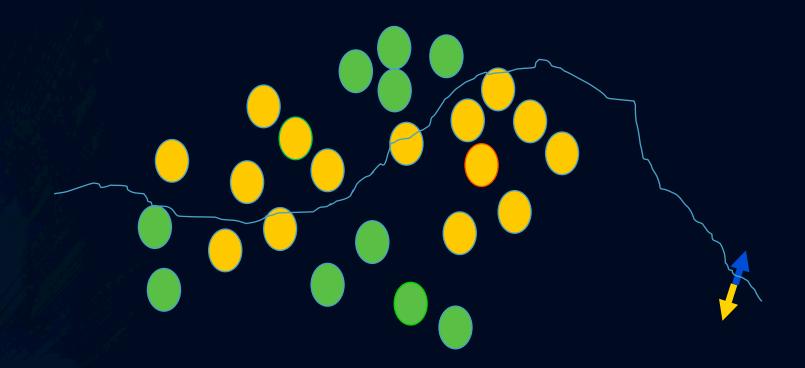


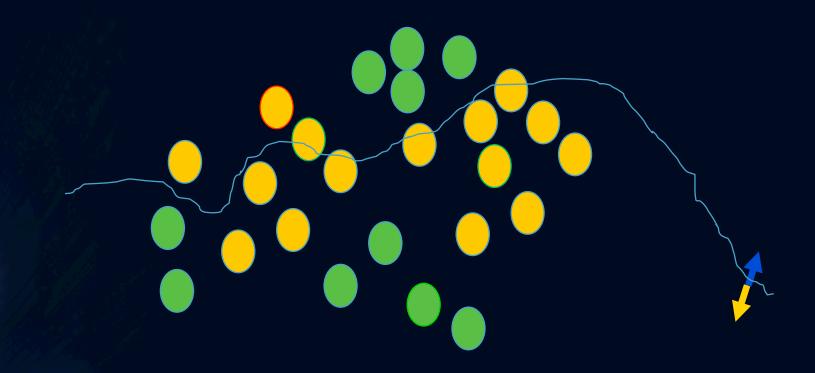
Adjust weights based on error





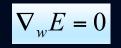



Use Backpropagation Algorithm to make changes that will reduce the error


Initial random weights

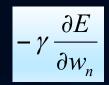
Eventually

Backpropagation


• Goal minimize network error:

$$E(x,w) = \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} \left\| p_{n,m} - a_{n,m} \right\|^{2}$$

Each partial derivative of grad E is made up of derivatives of succesive activation functions and weights


$$\left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_N}\right]^T$$

IDEA: iteratively follow in the direction of the negative gradient (steepest descent direction) until we arrive at the stopping criterion:

To achieve this, at each step, we update the weights based on its corresponding partial derivative

Thus the updating rule is...

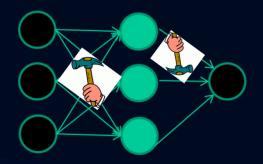
Gauss - Newton

• Thus the updating rule is :

$$w_{m+1} = w_m - \gamma \frac{\partial E}{\partial w_m}$$

but it can be computationally slow...

 On the other hand Gauss-Newton is computationally faster but not always stable (not always invertible H)

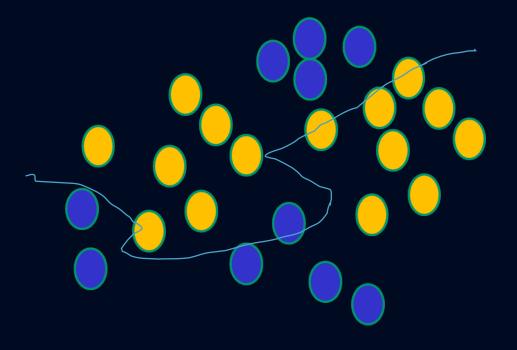

$$w_{m+1} = w_m - H^{-1} \frac{\partial E}{\partial w_m}$$

• We adapt it using the Levenberg-Marquardt algorithm

$$w_{m+1} = w_m - (H + \mu I)^{-1} \frac{\partial E}{\partial w_m}$$

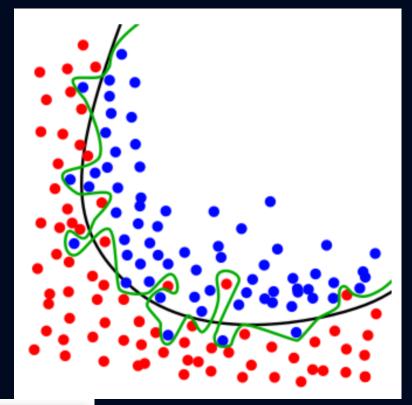
NN in general

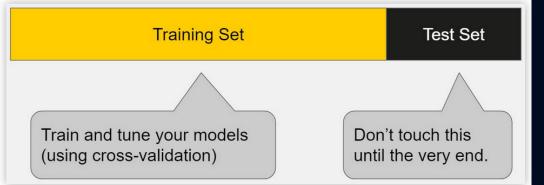
- Actually therefore NN are not very clever.
- They make thousands and thousands of mistakes from which they learn and forget each time and eventually make the network perform better
- eventually they learn and produce effective classifiers for many real applications


Design Issues and Challenges

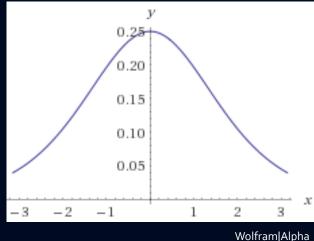
- Regularization preprocess data to avoid noisy outputs
- Over-fitting / Under-fitting
- Vanishing/Exploding Gradient

If f(x) is linear, the NN can **only** draw straight decision boundaries (even if there are many layers of units)



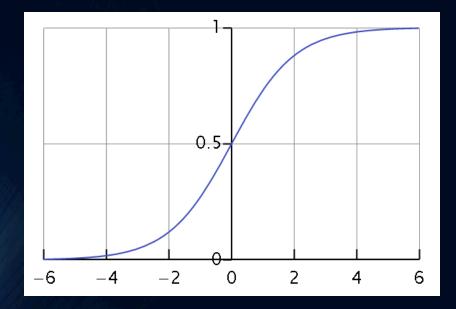

NNs use nonlinear *f*(x) so they can draw complex boundaries, but keep the data unchanged

Overfitting


Key issue with machine learning: How well can our model generalize from training data to new data?

The Vanishing Gradient Problem

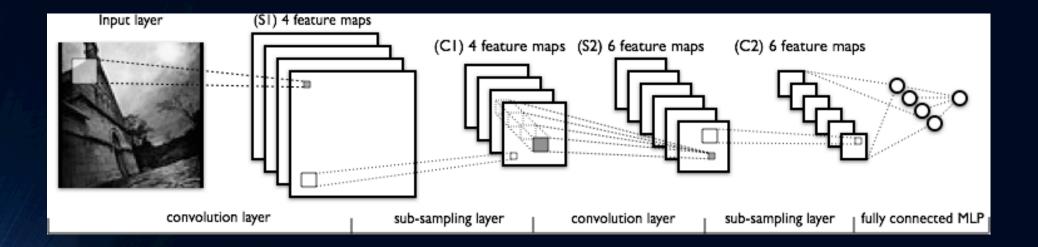
- Deep neural networks use backpropagation.
- Back propagation uses the chain rule.
- The chain rule multiplies derivatives.
- Often these derivatives between 0 and 1.
- As the chain gets longer, products get smaller
- until they disappear.

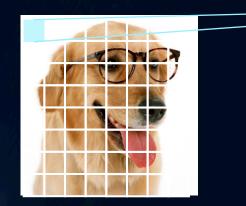


Derivative of sigmoid function

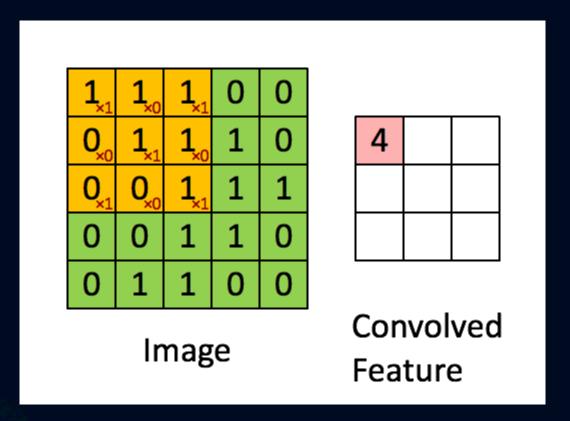
Exploding Gradient

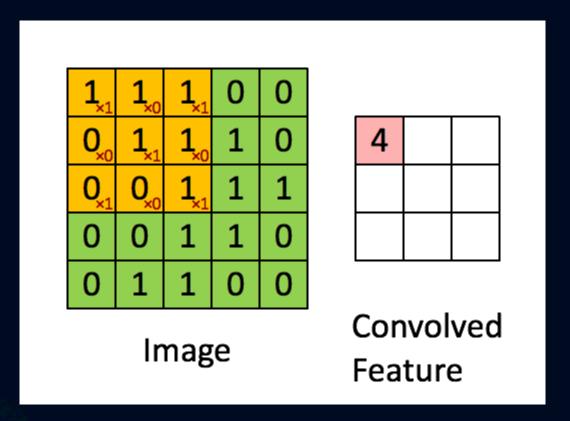
- With gradients larger than 1,
- you encounter the opposite problem
- with products becoming larger and larger
- as the chain becomes longer and longer,
- causing overlarge updates to parameters.
- This is the exploding gradient problem.


A classic activation function Sigmoid Function


The sigmoid function ranges from o to 1. Most of the time, it's much closer to one extreme than the other. This can be nice if you want to classify something as either o or 1.

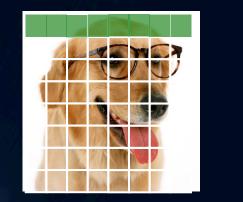
Also called the logistic function, this is a key component of logistic regression.


Given the shape of the curve, it's no surprise that sigmoid is a *nonlinear* function

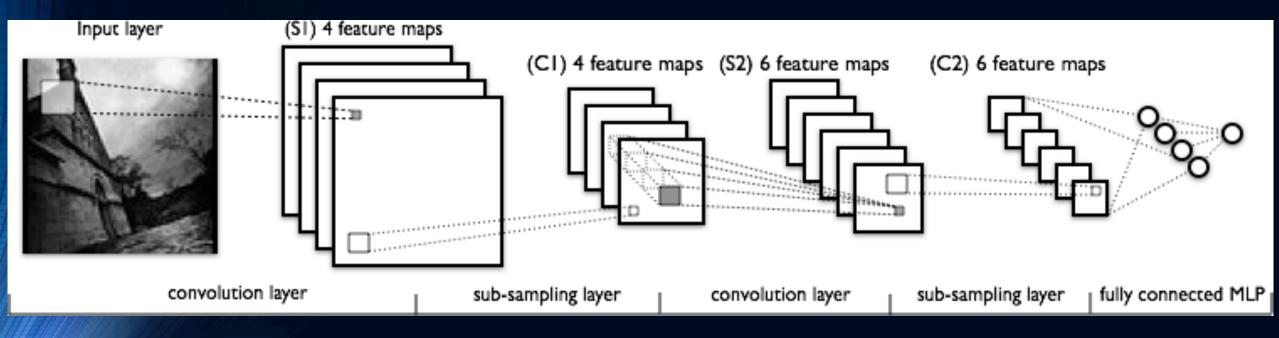

http://deeplearning.net/tutorial/lenet.html

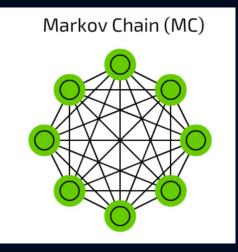

Toward a CNN - A convolution example

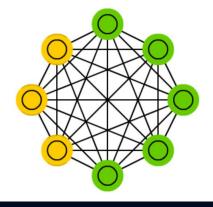
Toward a CNN - A convolution example





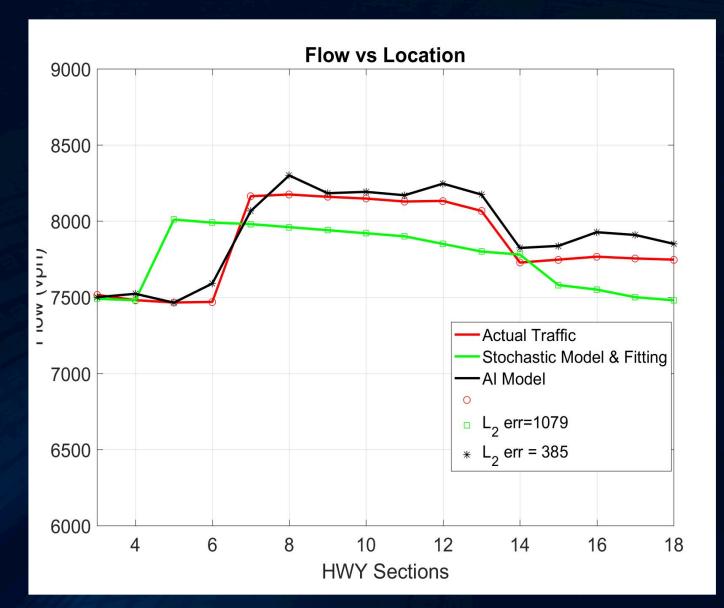




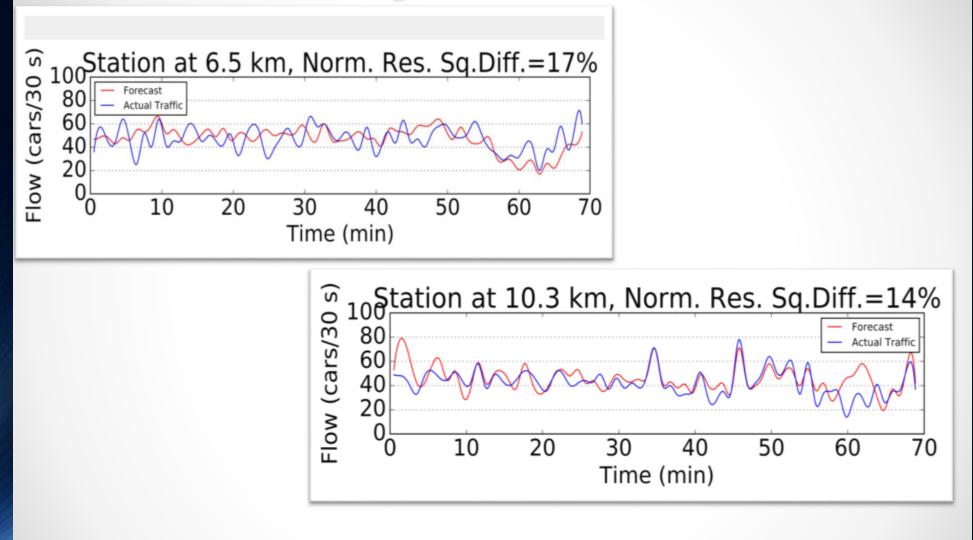

http://deeplearning.net/tutorial/lenet.html

CNN vs a Classical architectures

Deep Convolutional Network (DCN)

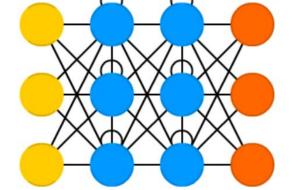


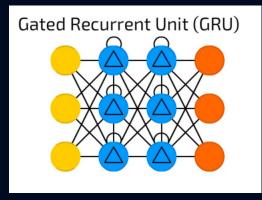
Boltzmann Machine (BM)


US 101

Actual data vs stochastic vs Al

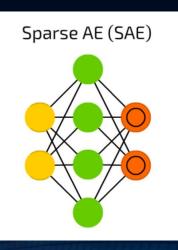
US-880

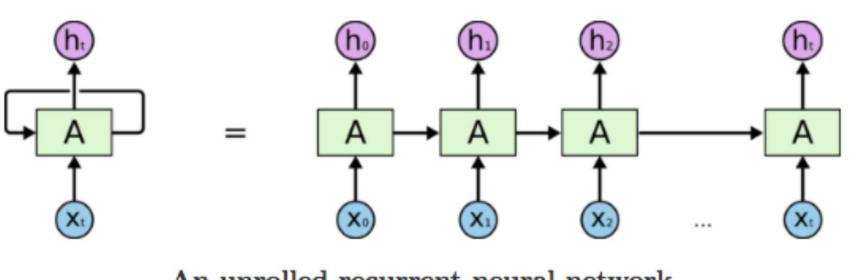

Forecasting over the next 1 hour



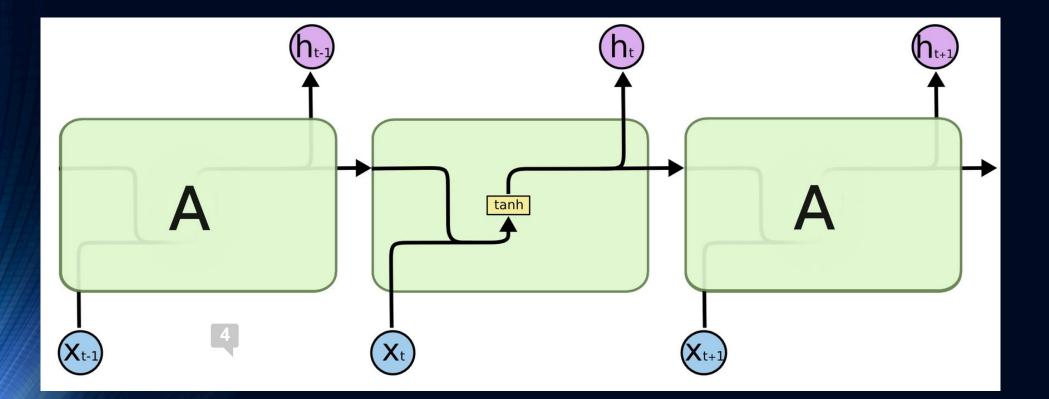
Accurate forecasting of traffic evolution for approximately the next 1 hour within a range of 10 km

Typical NN for time series type applications

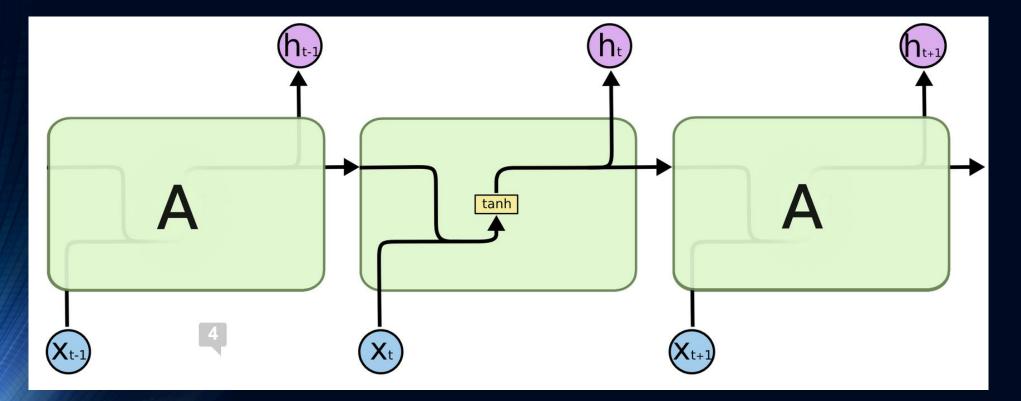


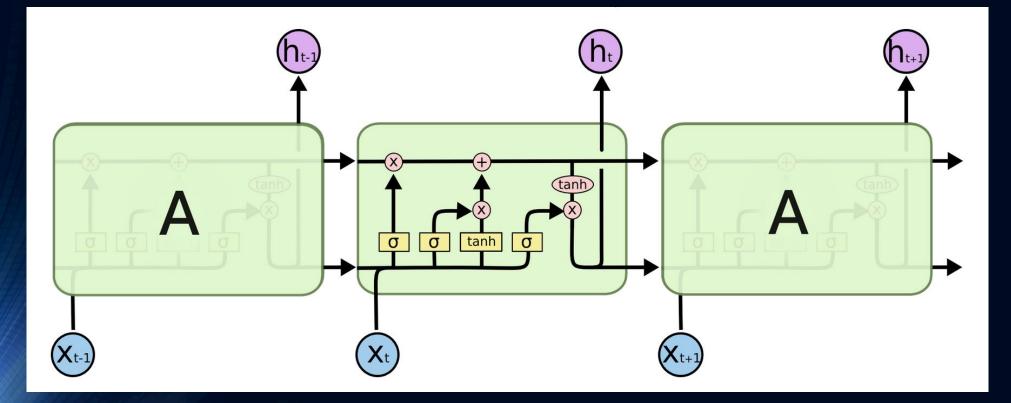


Long / Short Term Memory (LSTM)

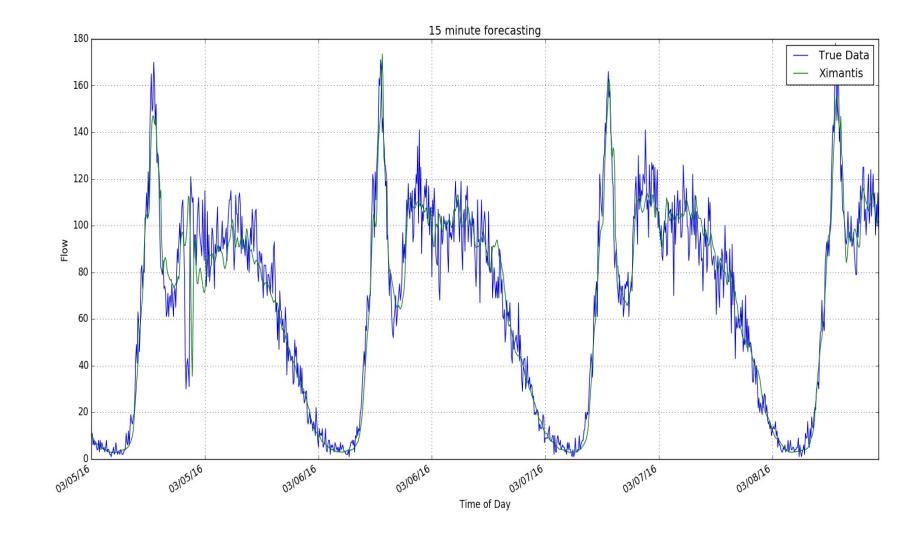

RNN

An unrolled recurrent neural network.


As the chain grows RNNs are not able to remember older lessons/training

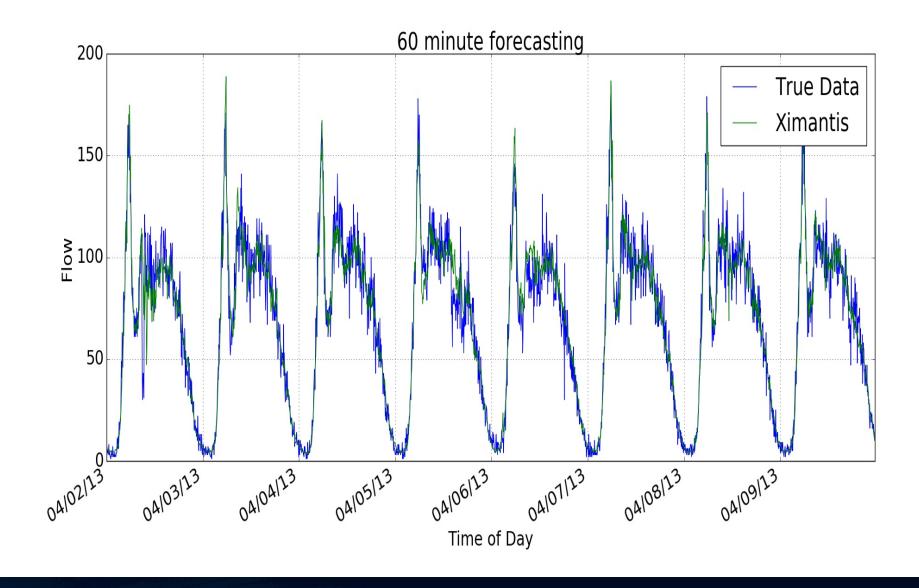

The repeating module in a RNN contains a tanh only

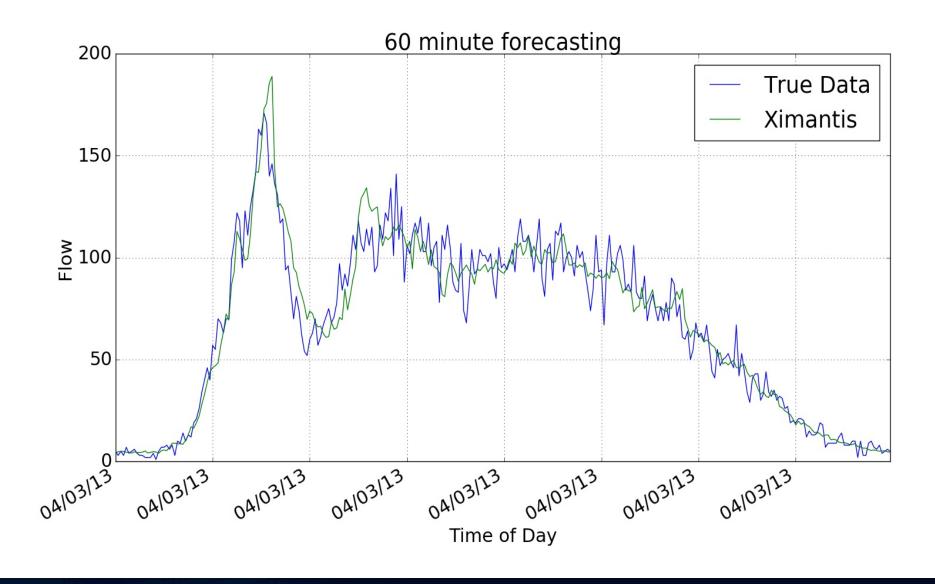
RNN & LSTMs (Long Short Term Memory) network

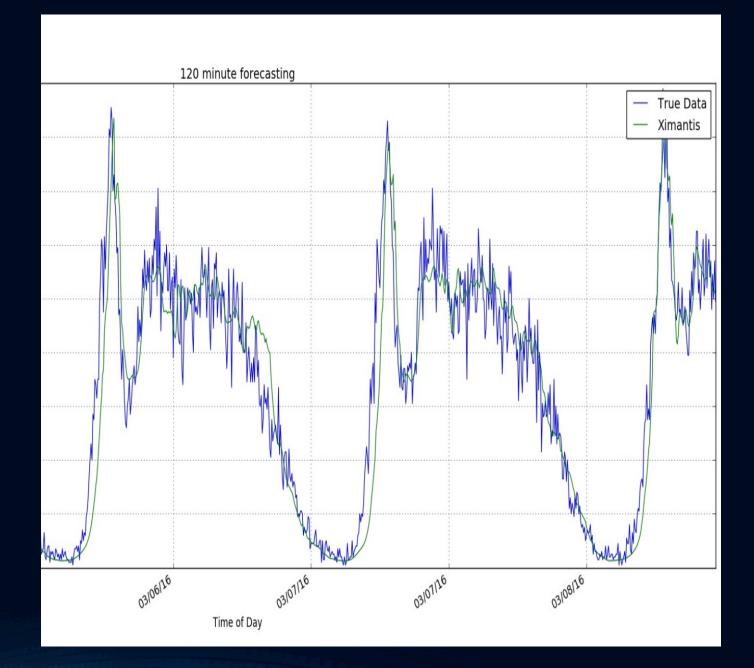

Instead the repeating module of a LSTM contains 4 interacting layers

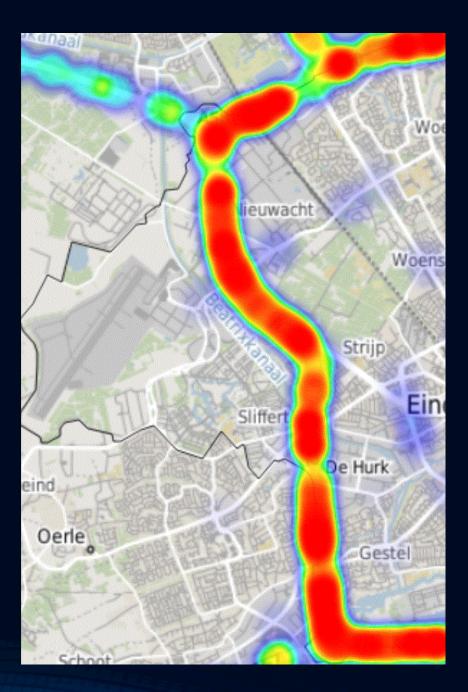
RNN & LSTMs (Long Short Term Memory) network

Instead the repeating module of a LSTM contains 4 interacting layers


• 15 min ahead


15 min ahead
30 min ahead


- 15 min ahead
- 30 min ahead
- 60 min ahead


- 15 min ahead
- 30 min ahead
- 60 min ahead

- 15 min ahead
- 30 min ahead
- 60 min ahead
- 120 min ...

Traffic Heat Maps

Last word...

Last word... Attention!

• Look into Attention networks!

Could be better suited for your application than LSTMs, GRUs, SAEs, etc...

Thank you!

A.Schadschneider. Traffic flow: a statistical physics point of view. Physica A, 312:153, 2002
A.Sopasakis. Unstable flow theory and modeling. Math. Comput. Modelling, 35(5-6):623, 2002
A.Sopasakis. Formal asymptotic models of vehicular traffic. Model closures. SIAM J.Appl.Math.,63:1561,2003
A.Sopasakis. Stochastic noise approach to traffic flow modeling. Physica A, 342:741, Nov. 2004

Traffic video by Fernando Livschitz, <u>www.bsvideos.com</u>