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* Image processing — needed or not?
 Data generation for training — collection of ideas
* ML training — several choices

* Real-time computations with ML —a how to perspective
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But first .... a few words about Ximantis

* What we do:

forecasting traffic evolution & congestion

* High resolution predictions in real-time of the exact location and
future time of traffic congestion - for a whole city

* Requires:
- lots of historical data +

- current data streaming and
- real-time processing of all incoming information

Ximantis - The Future of Traffic




How are such fast computations really done?

Here comes the math...

* Hybrid system of
- Stochastic (patented) traffic model +

- ML model




Main Statistical Mechanics Concepts
Describing the interacting vehicle system

We let /\ denote a lattice of N cells.
and consider the microscopic spin-like variable on A
We denote by S(x) the spin at location x

IOI1IOI1I1|

While we denote by the complete configuration of the
lattice at time t.

Configuration [&fis an element of the configuration space g {O,I}A
and we write o= {fo(x): xEA}




| attice-free Arrhenius rates

Spin — flip rate for particles adsorbing/desorbing from/to the problem domain.
The rates c are calculated from

. ¢, exp(-pU(i,0)) if o(i)=1
c(i,o) = {

c, w(i) if oi)=0

where QAU ,
0 otherwise

E |-V if |E |5V
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Incorporating the Physics and Creating the ASEP

We define the interaction potential

J,, 1 0<r<L
where J(l”)=

0, otherwise

and parameter L denotes the range of interactions.

Here parameter Jo denotes the strength of the interactions.

This potential enforces:
¢ Vehicles do not move backwards
e | ocal effect of the interactions



Building the continuous time, space Markov Chain
Microscopic Arrhenius Spin-Exchange Dynamics

We introduce a lattice-free Arrhenius spin-exchange rate c(x,y,0),

1 -U(x,0) ui 777777777777 .7777. 777777777 ‘,,. 77777777

c(x,y,0)=—o(Xx)[1-o(y)]w(y)e

Ty

where parameter denotes the characteristic time of the process and

810 4 U is the interaction potential.




Incorporating interactions & multi-lane motion

, .
Let’s look once again _U(x.0)

1
c(x,y,0)=—o0(x)[1-0(y)]w(y)e
at the rate functional Ty

to move forward

We incorporate via an additional anisotropy type potential.
Thus our total interaction potential now consists of:

U, (x) = U(x) {U, () RV, (x) = Sy (x.y)1-0(2))

k, if y =left
Wil (x,y) =1k 1f y=right
k1t y = forward

<
Q
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Free Parameters and Calibration

The model is characterized by the following three undetermined
parameters:

- the characteristic time of the stochastic process

- the strength of the interactions

- the interaction potential range




Probabilities
1 2 Al 3 4 5
.
Random pick

Monte Carlo moves vehicle 2

The probability of a spin-exchange between x and y during time [t, t+At]

Bl c(x, y,0)At + O(At?)

Monte Carlo
simulation and
prediction

of road traffic




Validation — Advanced Features
Timely breaking/returded acceleration

Space 1 mile

Lattice-Free
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Validation
Fundamental Diagram

Flow-Density Diagram Actual Data Simulated Data
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Validation: an incident

* Assume a 2-lane highway

* After some time Lane 1is blocked due to an accident
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Test case: a real highway —the NGSIM project

* Highway U.S. 101 near Los Angeles, in California

* 5 lanes with entrances and exits.

R
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A Monte Carlo Multi-Lane, Multi-Class
Vehicle simulation...

Real Data

Simulation

P



Test case: simulations vs reality

* Highway U.S. 101, Los Angeles, California

* 5 lanes with entrances and exits.

* 15 minutes intervals of very detailed rush hour data: 8:o05am to 8:20am

Using time interval 8:20am - 8:35am
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Image Processing — the data

Images orVideo from

* Charlotte,

* Ximantis - The Future of Traffic




Charlotte
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Data Collection

Images or Video from
* Charlotte,

* Goteborg
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Data Collection

Images orVideo from
* Charlotte,
* Goteborg,
* Stockholm

° etc

" Ximantis - The Future of Traffic




Image Processing and Counting

* Images

4 Ximantis - The Future of Traffic
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Image Processing and Counting

* Images

* Video

3
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Video
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Video
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# of Vehs: 115

Video
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Generate Data in Real Time at our AWS cloud
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| am sorry Dave, | am afraid | cannot do that!




Al \ >/

Possible and effective because:

* Data

* Powerful computers

How it works:

* Pay attention and learn (powerful computers)

120, * Algorithm figures out Patterns (lots of data available to do that)

* Remember but not too much... (design the network properly and allow to forget!)




Neural Networks

* Neural Networks imitating how the brain synapses process information

* Basic components: , , output layer each comprised of and
connected by

HIDDEN OuUTPUT

LAYER




Historical

*  Fukushima (1980) — Neo-Cognitron

¢ LeCun (1998) — Convolutional Neural Networks (CNN)

* Similarities to Neo-Cognitron

* Many layered MLP with backpropagation

* Tried early but without much success
* Veryslow
* Vanishing gradient

* Relatively recent work demonstrated significant accuracy improvements by "patiently" training deeper MLPs with
BP using fast machines (GPUs)

* More general learning!

i, * Much improved since 2012 with lots of extensions to the basic BP algorithm




Brief History of Neural Networks (NN)

» 1943: McCulloch & Pitts show that neurons can be combined to
construct a Turing machine

» 1958: Rosenblatt shows that perceptrons will converge if what
they are trying to learn can be represented

° ?69: Minsky & Papert showed the limitations of perceptrons,
ki

ling research for a decade

» 1985: The backpropagation algorithm revitalizes the field
Geoff Hinton et al

» 2006: The Hinton lab solves the training problem for DNNs




A few recent applications

ﬁm&whhﬂ @@/\QW o N

* Language identification (Gonzalez-Dominguez et al., 2014)

* Paraphrase detection (Cheng & Kartsaklis, 2015)

* Speech recognition (Graves, Abdel-Rahman, & Hinton, 2013)
* Handwriting recognition (Graves & Schmidhuber, 2009)

. Musi)c composition (Eck & Schmidhuber, 2002) and lyric generation (Potash, Romanov, & Rumshisky,
2015

* Robot control (Mayer et al., 2008)

* Natural language generation (Wen et al. 2015) (best paper at EMNLP)

7/ 77 ,', * Named entity recognition (Hammerton, 2003)




Few Examples of Machine Learning Problems

e Pattern Recognition

C Facial identities or facial expressions

C Handwritten or spoken words (e.qg., Siri)
. Medical images

. Sensor Data/loT

e Optimization

. Many parameters have “hidden” relationships that can be the basis of optimization

e Pattern Generation

© Generating images or motion sequences
]
w )
» *  Anomaly Detection
,
§ & ‘:'u" . Unusual patterns in the telemetry from physical and/or virtual plants (e.g., data centers)
pe - /
' - / /" . .
/ (/7 . Unusual sequences of credit card transactions
v (X)) 74 'y
¥y BL 7
197/ Y y . Unusual patterns of sensor data from a nuclear power plant
/] y'i
7 pl o or unusual sound in your car engine or ...
¢ Prediction
A o Future stock prices or currency exchange rates

v . e Network events




Al Learning?

* Learning is a procedure that consists of estimating the model parameters so that the learned model (algorithm) can perform
a specific task

*  InArtificial Neural Networks, these parameters are the weight matrix (w; 's)

* Types of learning considered here
*  Supervised

*  Unsupervised

* Supervised learning
*  Present the algorithm with a set of inputs and their corresponding outputs

/ *  See how closely the actual outputs match the desired ones

§ F /
7;’ A AL . Note generalization error (bias, variance)

* Iteratively modify the parameters to better approximate the desired outputs (gradient descent)

* Unsupervised

*  Algorithm learns internal representations and important features




A typical machine learning task
What is a "2"?

D23 2 235> 7
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Supervised learning

* The desired response (function) of the data is given

* You are given the correct answer together with the training data

* There are many types of supervised learning learning
algorithms

These include: Artificial Neural Networks, Decision Trees, Ensembles (Bagging,

Boosting, Random Forests, ...), k-NN, Linear Regression, Naive Bayes, Logistic

Regression (and other CRFs), Support Vector Machines (and other Large Margin
Classifiers), ...

» we will look later at an example which uses supervised learning
y, on a deep neural network




Unsupervised learning

* Basicidea: Discover unknown structure in input data

+ Data clustering and dimension reduction

*  More generally: find the relationships/structure in the data set

* No need for labeled data

*  The network itself finds the correlations in the data

* Learning algorithms include (again, many algorithms)
* K-Means Clustering
7" Z 7 * Auto-encoders/deep neural networks

* Restricted Boltzmann Machines
*  Hopfield Networks

* Sparse Encoders




Deep learning NN?

Several hidden layers!

Typically using convolutions to ascertain local structures

 Biological Plausibility — e.g. Visual Cortex

Amazing results... in speech, NLP, vision/multimodal work

Does its own feature selection!
The big players (Google, Facebook, Baidu, Microsoft, IBM...) are doing a lot of this

What's new is hardware that can use these architectures at scale.

Highly varying functions can be efficiently represented with deep architectures
Less weights/parameters to update than a less efficient shallow representation







x = -0.06x2.7 +2.5x8.6 + 1.4x0.002 =21.34




A dataset
Fields

14 277 1.9
3.8 3.4 3.2
64 2.8 1.7
4.1 0.1 0.2
etc ...

class

S = O




Training the neural network

Fields class
14 27 1.9 0
3.8 34 3.2 0
64 2.8 1.7 |
4.1 0.1 0.2 0

etc ...




Training data

Fields class
1427 1.9 0

3.8 34 3.2 0

64 2.8 1.7 |

4.1 0.1 0.2 0

etc ...

Initialise with random weights




Training data

rEm[ds duj
38 34 3.2 0
6.4 2.8 1.7 |
4.1 0.1 0.2 0
etc ...

Present a training pattern




Training data

rEm[ds duj
38 34 3.2 0
6.4 2.8 1.7 |
4.1 0.1 0.2 0
etc ...

Feed it through to get output




Training data

rEm[ds duj
38 34 3.2 0
6.4 2.8 1.7 |
4.1 0.1 0.2 0
etc ...

Compare with target output




Training data
Field las 5 Adjust weights based on error

38 34 3.2 0
64 2.8 1.7 |
4.1 0.1 0.2 0
etc ...




Training data —
Fields class Present a training pattern

1427 19 0
383432 0

6428 1.7 ]
4101 02 0
etc ...




Training data ,
Fields class Feed it through to get output

1427 19 0
383432 0

6428 1.7 ]
4101 02 0
etc ...




Training data .
Fields class Compare with target output

1427 19 0
383432 0

6428 1.7 ]
4101 02 0
etc ...




Training data
Fields class

1.4 27 1.9 0
3.8 34 3.2 0

6428 1.7 J

4.1 0.1 0.2 0
etc ...

Adjust weights based on error




Training data
Fields class

1.4 27 1.9 0
3.8 34 3.2 0

[ 6428 17 J

4.1 0.1 0.2 0
etc ...

Keep repeating ....




The decision boundary perspective...

Initial random weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Eventually ....




Backpropagation

1 & & 2
* Goal minimize network error: — —-d
2 p n,m n,m
1

n=1 m=

Each partial derivative of grad E is made up of derivatives of succesive activation functions and weights

IDEA: iteratively follow in the direction of the negative gradient (steepest descent direction) until we arrive at the stopping criterion:

To achieve this, at each step, we update the weights based on its corresponding partial derivative

770 4 Thus the updating rule is...




Gauss - Newton

* Thus the updating ruleis: w

m+l

but it can be computationally slow...

* On the other hand Gauss-Newton is computationally faster but not always stable
(not always invertible H)

. OF

BN

1 i * We adapt it using the Levenberg-Marquardt algorithm  [SRECRIMEI Vs £ B
7 w,




NN in general

* Actually therefore NN are not very clever.

* They make thousands and thousands of mistakes from which

they learn and forget each time and eventually make the
network perform better

* eventually they learn and produce effective classifiers for
many real applications

7.
b
,,,,,,,
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Design Issues and Challenges

* Regularization — preprocess data to avoid noisy outputs

 Over-fitting / Under-fitting

* Vanishing/Exploding Gradient



If f(x) is linear, the NN can only draw straight decision
boundaries (even if there are many layers of units)




NNs use nonlinear f(x) so they can draw complex
boundaries, but keep the data unchanged




Overfitting

Key issue with machine learning:
How well can our model generalize
from training data to new data?

/\\.

Training Set IHE.

/
y \
\
y Y
\

/[ \,
4 N

=

/BN Train and tune your models Don’t touch this
78777 (using cross-validation) until the very end.
/ / /o / // ,,," \\; \\




The Vanishing Gradient Problem

* Deep neural networks use backpropagation.

* Back propagation uses the chain rule.

* The chain rule multiplies derivatives.

e Often these derivatives between o and 1.

* As the chain gets longer, products get smaller

* until they disappear.

Wolfram|Alpha
Derivative of sigmoid function




Exploding Gradient

* With gradients larger than 1,

* you encounter the opposite problem

* with products becoming larger and larger

* as the chain becomes longer and longer,

* causing overlarge updates to parameters.

* This is the exploding gradient problem.




A classic activation function

Sigmoid Function

The sigmoid function ranges from o to 1.
Most of the time, it's much closer to one
extreme than the other. This can be nice if
you want to classify something as either o
or 1.

Also called the logistic function, this is a
key component of logistic regression.

Given the shape of the curve, it's no

surprise that sigmoid is a nonlinear
function



CNN for Image Classification

Inpuc layer I) 4 feature maps

convolution layer sub-sampling layer convolution layer sub-sampling layer | fully connected MLP




CNN for Image Classification

Convolutional Layer




Toward a CNN - A convolution example

Convolved
Feature




Toward a CNN - A convolution example

Convolved
Feature




CNN for Image Classification

Convolutional Layer




CNN for Image Classification

Convolutional Layer




CNN for Image Classification

Convolutional Layer




CNN for Image Classification

Convolutional Layer




CNN for Image Classification

Max Pooling




CNN for Image Classification

Max Pooling




CNN for Image Classification

Max Pooling




CNN for Image Classification

Max Pooling




Deep CNN for Image Classification

Inpuc layer I) 4 feature maps

convolution layer sub-sampling layer convolution layer sub-sampling layer | fully connected MLP




CNN vs a Classical architectures

Deep Convolutional Network (DCN) Markov Chain (MC)
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Flow vs Location
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US-880

Forecasting over the next 1 hour
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Typical NN for time series type applications

Gated Recurrent Unit (GRU)

Recurrent Neural Network (RNN)
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Sparse AE (SAE)
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RNN

An unrolled recurrent neural network.

As the chain grows RNNs are not able to remember older lessons/training

Ximantis - The Future of Traffic



RNN

The repeating module in a RNN contains a tanh only

Ximantis - The Future of Traffic




RNN & LSTMs
(Long Short Term Memory) network

Instead the repeating module of a LSTM contains 4 interacting layers

Ximantis - The Future of Traffic



RNN & LSTMs
(Long Short Term Memory) network

Instead the repeating module of a LSTM contains 4 interacting layers
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Forecast

15 minute forecasting

— True Data
— Ximantis
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Forecast

30 minute forecasting

— True Data
— Ximantis
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Forecast

* 15 min ahead

* 30 min ahead

Ximantis - The Future of Traffic

60 minute forecasting

— True Data
—  Ximantis
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Forecast

60 minute forecasting

* 15 min ahead i f | | — True Data
f 1 ‘ — Ximantis

* 30 min ahead

0&
Time of Day
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Forecast

15 min ahead
30 min ahead

60 min ahead

Ximantis - The Future of Traffic

120 minute forecasting

Time of Day

— True Data
—  Ximantis
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Traffic Heat Maps

.
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Last word...

Ximantis - The Future of Traffic
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Last word... Attention!

* Look into Attention networks!

Could be better suited for your application than
LSTMs, GRUs, SAEs, etc...

& v Ximantis - The Future of Traffic
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