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a	ML	approach	
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Content	
•  Image	processing	–	needed	or	not?	

•  Data	generation	for	training	–	collection	of	ideas	

• ML	training	–	several	choices	

•  Real-time	computations		with	ML	–	a	how	to	perspective		
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But	first	....	a	few	words	about	Ximantis	

• What	we	do:		

	 	forecasting	traffic	evolution	&	congestion	
	

•  High	resolution	predictions	in	real-time	of	the	exact	location	and	
future	time	of	traffic	congestion	-	for	a	whole	city	

•  Requires:		
	-	lots	of	historical	data	+		
	-	current	data	streaming	and		
	-	real-time	processing	of		all	incoming	information	
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How	are	such	fast	computations	really	done?	

•  Hybrid	system	of		

	-	Stochastic	(patented)	traffic	model	+	

	-	ML	model	
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Here	comes	the	math...	



We	let	Λ denote	a	lattice	of	N	cells.		

and	consider		the	microscopic	spin-like	variable																					on	Λ

We	denote	by	s(x)	the	spin	at	location	x	
	
	
	
	
	

While	we	denote	by	   																		the	complete	configuration	of	the	
lattice	at	time	t.		

	
Configuration									is	an	element	of	the	configuration	space																														

and	we	write				
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Main	Statistical	Mechanics	Concepts	
Describing	the	interacting	vehicle	system	
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Lattice-free	Arrhenius	rates	
Spin	–	flip	rate	for	particles	adsorbing/desorbing	from/to	the	problem	domain.	
The	rates	c	are	calculated	from	
	
	
	
	
	
where	
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We	define	the	interaction	potential																				
	
	
	
where		
	
	
	
and	parameter	L	denotes	the	range	of	interactions.		
	
	
	
Here	parameter	Jo	denotes	the	strength	of	the	interactions.	
	
This	potential	enforces:	
• 	Vehicles	do	not	move	backwards	
• 	Local	effect	of	the	interactions		
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Incorporating	the	Physics	and	Creating	the	ASEP	
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Building	the	continuous	time,	space	Markov	Chain	

We	introduce	a	lattice-free	Arrhenius	spin-exchange	rate		c(x,y,σ),	

	

	

	

	

	

	

	
	

	

where	parameter										denotes	the	characteristic	time	of	the	process	and		

U	is	the	interaction	potential.	
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Microscopic	Arrhenius	Spin-Exchange	Dynamics	
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Incorporating	interactions	&	multi-lane	motion	

Let’s	look	once	again	

at	the	rate	functional		

to	move	forward		
	
	
	
	

We	incorporate	lane-changing	via	an	additional	anisotropy	type	potential.		
Thus	our	total	interaction	potential	now	consists	of:	

	 	 	 							where																																																														
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Free	Parameters	and	Calibration	
The	model	is	characterized	by	the	following	three	undetermined	

parameters:	

•  						-	the	characteristic	time	of	the	stochastic	process	

•  						-	the	strength	of	the	interactions	

•  						-	the	interaction	potential	range	

•  .....								
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Probabilities	 Monte	Carlo	
simulation	and	
prediction	
of	road	traffic	

Random	pick	

Monte	Carlo	moves	vehicle	2	

)(),,( 2tOtyxc Δ+Δσ

The	probability	of	a	spin-exchange	between	x	and	y	during	time	[t,	t+Δt]		
	
is	
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Validation	–	Advanced	Features	
Timely	breaking/returded	acceleration	



Flow-Density	Diagram	 Simulated	Data	
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Validation	
Fundamental	Diagram	

Actual	Data	



Validation:	an	incident	

•  Assume	a	2-lane	highway	

•  After	some	time	Lane	1	is	blocked	due	to	an	accident	
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Test	case:	a	real	highway	–	the	NGSIM	project	

•  Highway	U.S.	101	near	Los	Angeles,	in	California	

•  5	lanes	with	entrances	and	exits.		

•  15	minutes	intervals	of	very	detailed	data	
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A	Monte	Carlo	Multi-Lane,	Multi-Class		
Vehicle		simulation…	

carSimulator.html

Simulation	

Real	Data	
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Test	case:	simulations	vs	reality	

•  Highway	U.S.	101,	Los	Angeles,	California	

•  5	lanes	with	entrances	and	exits.		

•  15	minutes	intervals	of	very	detailed	rush	hour	data:	8:05am	to	8:20am	
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Image	Processing	–	the	data	

Images	or	Video	from		

•  Charlotte,		
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Charlotte	
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Data	Collection	

Images	or	Video	from		

•  Charlotte,		

•  Goteborg	
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Goteborg	
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Images	
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Data	Collection	

Images	or	Video	from		

•  Charlotte,		

•  Goteborg,		

•  Stockholm		

•  etc	
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Image	Processing	and	Counting	
•  Images	
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Image	Processing	and	Counting	
•  Images	
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Video	
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Generate	Data	in	Real	Time	at	our	AWS	cloud	
    2    13   437  1118846980200    16.467    35.381  6451137.641  1873344.962  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    14   437  1118846980300    16.447    39.381  6451140.329  1873342.000  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    15   437  1118846980400    16.426    43.381  6451143.018  1873339.038  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    16   437  1118846980500    16.405    47.380  6451145.706  1873336.077  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    17   437  1118846980600    16.385    51.381  6451148.395  1873333.115  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    18   437  1118846980700    16.364    55.381  6451151.084  1873330.153  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    19   437  1118846980800    16.344    59.381  6451153.772  1873327.192  14.5  4.9   2  40.00   0.00   2     0     0   0.00      0.00  
    2    20   437  1118846980900    16.323    63.379  6451156.461  1873324.230  14.5  4.9   2  40.02   0.25   2     0     0   0.00      0.00  
    2    21   437  1118846981000    16.303    67.383  6451159.149  1873321.268  14.5  4.9   2  40.03   0.13   2     0     0   0.00      0.00  
    2    22   437  1118846981100    16.282    71.398  6451161.838  1873318.307  14.5  4.9   2  39.93  -1.63   2     0    13   0.00      0.00  
    2    23   437  1118846981200    16.262    75.401  6451164.546  1873315.323  14.5  4.9   2  39.61  -4.54   2     0    13   0.00      0.00  
    2    24   437  1118846981300    16.254    79.349  6451167.199  1873312.382  14.5  4.9   2  39.14  -5.73   2     0    13   0.00      0.00  
    2    25   437  1118846981400    16.221    83.233  6451169.802  1873309.533  14.5  4.9   2  38.61  -5.15   2     0    13   0.00      0.00  
    2    26   437  1118846981500    16.201    87.043  6451172.358  1873306.719  14.5  4.9   2  38.28  -1.61   2     0    13   0.00      0.00  
    2    27   437  1118846981600    16.169    90.829  6451174.961  1873303.870  14.5  4.9   2  38.42   3.73   2     0    13   0.00      0.00  
    2    28   437  1118846981700    16.204    94.683  6451177.613  1873300.929  14.5  4.9   2  38.78   4.86   2     0    13   0.00      0.00  
    2    29   437  1118846981800    16.252    98.611  6451180.342  1873297.924  14.5  4.9   2  38.92   0.00   2     0    13   0.00      0.00  
    2    30   437  1118846981900    16.339   102.560  6451182.980  1873294.961  14.5  4.9   2  38.54  -8.59   2     0    13   0.00      0.00  
    2    31   437  1118846982000    16.400   106.385  6451185.537  1873292.122  14.5  4.9   2  37.51 -11.20   2     0    13   0.00      0.00  
    2    32   437  1118846982100    16.430   110.079  6451188.021  1873289.408  14.5  4.9   2  36.34 -10.86   2     0    13   0.00      0.00  
    2    33   437  1118846982200    16.435   113.628  6451190.424  1873286.817  14.5  4.9   2  35.50  -6.20   2     0    13   0.00      0.00  
    2    34   437  1118846982300    16.478   117.118  6451192.757  1873284.247  14.5  4.9   2  35.08  -1.89   2     0    13   0.00      0.00  
    2    35   437  1118846982400    16.520   120.600  6451195.109  1873281.656  14.5  4.9   2  34.96   0.18   2     0    13   0.00      0.00  
    2    36   437  1118846982500    16.562   124.096  6451197.462  1873279.065  14.5  4.9   2  34.98   0.25   2     0    13   0.00      0.00  
    2    37   437  1118846982600    16.605   127.597  6451199.814  1873276.473  14.5  4.9   2  35.00   0.04   2     0    13   0.00      0.00  
    2    38   437  1118846982700    16.647   131.099  6451202.167  1873273.882  14.5  4.9   2  34.99  -0.20   2     0    13   0.00      0.00  
    2    39   437  1118846982800    16.691   134.595  6451204.519  1873271.290  14.5  4.9   2  34.98  -0.02   2     0    13   0.00      0.00  
    2    40   437  1118846982900    16.727   138.081  6451206.879  1873268.700  14.5  4.9   2  35.10   1.95   2     0    13   0.00      0.00  
    2    41   437  1118846983000    16.796   141.578  6451209.191  1873266.113  14.5  4.9   2  35.49   5.55   2     0    13   0.00      0.00  
    2    42   437  1118846983100    16.795   145.131  6451211.610  1873263.514  14.5  4.9   2  36.20   8.99   2     0    13   0.00      0.00  
    2    43   437  1118846983200    16.724   148.784  6451214.156  1873260.882  14.5  4.9   2  37.15  10.44   2     0    13   0.00      0.00  
    2    44   437  1118846983300    16.588   152.559  6451216.824  1873258.213  14.5  4.9   2  38.12   9.30   2     0    13   0.00      0.00  
    2    45   437  1118846983400    16.376   156.449  6451219.616  1873255.522  14.5  4.9   2  38.76   4.36   2     0    13   0.00      0.00  
    2    46   437  1118846983500    16.064   160.379  6451222.548  1873252.829  14.5  4.9   2  38.95  -0.73   2     0    13   0.00      0.00  
    2    47   437  1118846983600    15.763   164.277  6451225.462  1873250.139  14.5  4.9   2  38.95  -1.15   2     0    13   0.00      0.00  
    2    48   437  1118846983700    15.471   168.150  6451228.376  1873247.450  14.5  4.9   2  38.99   1.90   2     0    13   0.00      0.00  
    2    49   437  1118846983800    15.226   172.044  6451231.290  1873244.760  14.5  4.9   2  39.18   3.47   2     0    13   0.00      0.00  
    2    50   437  1118846983900    14.979   176.000  6451234.204  1873242.071  14.5  4.9   2  39.34   0.02   2     0    13   0.00      0.00  
    2    51   437  1118846984000    14.720   179.959  6451237.144  1873239.374  14.5  4.9   2  39.20  -3.52   2     0    13   0.00      0.00  
    2    52   437  1118846984100    14.508   183.862  6451239.988  1873236.708  14.5  4.9   2  38.89  -3.28   2     0    13   0.00      0.00  
    2    53   437  1118846984200    14.331   187.716  6451242.770  1873234.057  14.5  4.9   2  38.73  -0.33   2     0    13   0.00      0.00  
    2    54   437  1118846984300    14.240   191.561  6451245.501  1873231.336  14.5  4.9   2  38.88   3.49   2     0    13   0.00      0.00  
    2    55   437  1118846984400    14.309   195.455  6451248.125  1873228.494  14.5  4.9   2  39.28   5.00   2     0    13   0.00      0.00  
    2    56   437  1118846984500    14.428   199.414  6451250.788  1873225.539  14.5  4.9   2  39.68   3.76   2     0    13   0.00      0.00  
    2    57   437  1118846984600    14.540   203.417  6451253.489  1873222.554  14.5  4.9   2  39.94   1.29   2     0    13   0.00      0.00  
    2    58   437  1118846984700    14.646   207.430  6451256.177  1873219.592  14.5  4.9   2  40.02  -0.22   2     0    13   0.00      0.00  
    2    59   437  1118846984800    14.751   211.431  6451258.866  1873216.630  14.5  4.9   2  40.00  -0.21   2     0    13   0.00      0.00  
    2    60   437  1118846984900    14.856   215.428  6451261.554  1873213.669  14.5  4.9   2  39.99   0.00   2     0    13   0.00      0.00  
    2    61   437  1118846985000    14.962   219.427  6451264.243  1873210.707  14.5  4.9   2  39.99   0.00   2     0    13   0.00      0.00  
    2    62   437  1118846985100    15.067   223.462  6451266.932  1873207.745  14.5  4.9   2  39.65  -5.35   2     0    13   0.00      0.00  
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I	am	sorry	Dave,	I	am	afraid	I	cannot	do	that!	



AI	
Possible	and	effective	because:	

•  Data	

•  Powerful	computers	

	

How	it	works:	

•  Pay	attention	and	learn	(powerful	computers)	

•  Algorithm	figures	out	Patterns	(lots	of	data	available	to	do	that)	

•  Remember	but	not	too	much...	(design	the	network	properly	and	allow	to		forget!)	



Neural	Networks	
•  Neural	Networks	imitating	how	the	brain	synapses	process	information	

•  Basic	components:	input	layer,	hidden	layers,	output	layer	each	comprised	of	nodes	and	
connected	by	weights	



Historical	
•  Fukushima	(1980)	–	Neo-Cognitron	

•  LeCun	(1998)	–	Convolutional	Neural	Networks	(CNN)	

•  Similarities	to	Neo-Cognitron	

•  Many	layered	MLP	with	backpropagation	

•  Tried	early	but	without	much	success	

•  Very	slow	

•  Vanishing	gradient	

•  Relatively	recent	work	demonstrated	significant	accuracy	improvements	by	"patiently"	training	deeper	MLPs	with	
BP	using	fast	machines	(GPUs)		

•  More	general	learning!	

•  Much	improved	since	2012	with	lots	of	extensions	to	the	basic	BP	algorithm	



Brief	History	of	Neural	Networks	(NN)	

•  1943:	McCulloch	&	Pitts	show	that	neurons	can	be	combined	to	
construct	a	Turing	machine	
	

•  1958:	Rosenblatt	shows	that	perceptrons	will	converge	if	what	
they	are	trying	to	learn	can	be	represented	

•  1969:	Minsky	&	Papert	showed	the	limitations	of	perceptrons,	
killing	research	for	a	decade	

•  1985:	The	backpropagation	algorithm	revitalizes	the	field	
•  Geoff	Hinton	et	al	

•  2006:	The	Hinton	lab	solves	the	training	problem	for	DNNs	



A	few	recent	applications	

•  Language	identification	(Gonzalez-Dominguez	et	al.,	2014)	

•  Paraphrase	detection	(Cheng	&	Kartsaklis,	2015)	

•  Speech	recognition	(Graves,	Abdel-Rahman,	&	Hinton,	2013)	

•  Handwriting	recognition	(Graves	&	Schmidhuber,	2009)	

•  Music	composition	(Eck	&	Schmidhuber,	2002)	and	lyric	generation	(Potash,	Romanov,	&	Rumshisky,	
2015)	

•  Robot	control	(Mayer	et	al.,	2008)	

•  Natural	language	generation	(Wen	et	al.	2015)	(best	paper	at	EMNLP)	

•  Named	entity	recognition	(Hammerton,	2003)	

http://www.cs.toronto.edu/~graves/handwriting.html	



Few	Examples	of	Machine	Learning	Problems		
•  Pattern	Recognition	

•  Facial	identities	or	facial	expressions	

•  Handwritten	or	spoken	words	(e.g.,	Siri)	

•  Medical	images	

•  Sensor	Data/IoT	

•  Optimization	

•  Many	parameters	have	“hidden”	relationships	that	can	be	the	basis	of	optimization	

•  Pattern	Generation		

•  Generating	images	or	motion	sequences	

•  Anomaly	Detection	

•  Unusual	patterns	in	the	telemetry	from	physical	and/or	virtual	plants	(e.g.,	data	centers)	

•  Unusual	sequences	of	credit	card	transactions		

•  Unusual	patterns	of	sensor	data	from	a	nuclear	power	plant		

•  or	unusual	sound	in	your	car	engine	or	…	

•  Prediction	

•  Future	stock	prices	or	currency	exchange	rates		

•  Network	events	

•  …	



AI	Learning?	

•  Learning	is	a	procedure	that	consists	of	estimating	the	model	parameters	so	that	the	learned	model	(algorithm)	can	perform	
a	specific	task	

•  In	Artificial	Neural	Networks,	these	parameters	are	the	weight	matrix	(wi,j’s)	

•  Types	of	learning	considered	here	

•  Supervised	

•  Unsupervised	

•  Semi-supervised	learning	

•  Reinforcement	learning	

•  Supervised	learning	

•  Present	the	algorithm	with	a	set	of	inputs	and	their	corresponding	outputs	

•  See	how	closely	the	actual	outputs	match	the	desired	ones	
•  Note	generalization	error	(bias,	variance)	

•  Iteratively	modify	the	parameters	to	better	approximate	the	desired	outputs	(gradient	descent)	

•  Unsupervised	

•  Algorithm	learns	internal	representations	and	important	features	



A	typical	machine	learning	task	
What	is	a	“2”?	



Supervised	learning	
•  The	desired	response	(function)	of	the	data	is	given	

•  You	are	given	the	correct	answer	together	with	the	training	data	
	

•  There	are	many	types	of	supervised	learning	learning	
algorithms	

These	include:	Artificial	Neural	Networks,	Decision	Trees,	Ensembles	(Bagging,	
Boosting,	Random	Forests,	…),	k-NN,	Linear	Regression,	Naive	Bayes,	Logistic	
Regression	(and	other	CRFs),	Support	Vector	Machines	(and	other	Large	Margin	
Classifiers),	…	

•  we	will	look	later	at	an	example	which	uses	supervised	learning	
on	a	deep	neural	network	



Unsupervised	learning	
•  Basic	idea:	Discover	unknown	structure	in	input	data	

•  Data	clustering	and	dimension	reduction	

•  More	generally:	find	the	relationships/structure	in	the	data	set	

•  No	need	for	labeled	data	

•  The	network	itself	finds	the	correlations	in	the	data	

•  Learning	algorithms	include	(again,	many	algorithms)	

•  K-Means	Clustering	

•  Auto-encoders/deep	neural	networks	

•  Restricted	Boltzmann	Machines	
•  Hopfield	Networks	

•  Sparse	Encoders	

•  …	

	 		



Deep	learning	NN?	
•  Several	hidden	layers!	

	

•  Typically	using	convolutions	to	ascertain	local	structures	
	

•  Biological	Plausibility	–	e.g.	Visual	Cortex	
	

•  Amazing	results…	in	speech,	NLP,	vision/multimodal	work	
	

•  Does	its	own	feature	selection!	
	

•  The	big	players	(Google,	Facebook,	Baidu,	Microsoft,	IBM…)	are	doing	a	lot	of	this	
	

•  What’s	new	is	hardware	that	can	use	these	architectures	at	scale.			
	

•  Highly	varying	functions	can	be	efficiently	represented	with	deep	architectures	

•  Less	weights/parameters	to	update	than	a	less	efficient	shallow	representation	



W1  

W2  

W3  

f(x) 

1.4 

-2.5 

-0.06 



2.7 

-8.6 

0.002 

f(x) 

1.4 

-2.5 

-0.06 

x =  -0.06×2.7 + 2.5×8.6 + 1.4×0.002  = 21.34  



A  dataset 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 



Training the neural network  
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Initialise with random weights 



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Present a training pattern 

1.4  
 
2.7                                                     
 
1.9         



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Feed it through to get output 

1.4  
 
2.7                                                    0.8 
 
1.9         



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Compare with target output 

1.4  
 
2.7                                                    0.8  
                                                  0 
1.9                                           error 0.8 



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Adjust weights based on error 

    1.4 
 
2.7                                                    0.8  
                                                    0       
1.9                                           error 0.8 



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Present a training pattern 

6.4  
 
2.8                                                     
 
1.7         



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Feed it through to get output 

6.4  
 
2.8                                                     0.9                                                    
 
1.7         



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Compare with target output 

6.4  
 
2.8                                                     0.9                                                    
                                                  1   
1.7                                          error  -0.1 



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Adjust weights based on error 

6.4  
 
2.8                                                     0.9                                                    
                                                  1   
1.7                                          error  -0.1 



Training data 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

Keep repeating …. 

6.4  
 
2.8                                                     0.9                                                    
                                                  1   
1.7                                          error  -0.1 

Use Backpropagation Algorithm 
to make 
changes that will reduce the error 



The	decision	boundary	perspective…	
Initial random weights 



The	decision	boundary	perspective…	
Present a training instance / adjust the weights 



The	decision	boundary	perspective…	
Present a training instance / adjust the weights 



The	decision	boundary	perspective…	
Present a training instance / adjust the weights 



The	decision	boundary	perspective…	
Present a training instance / adjust the weights 



The	decision	boundary	perspective…	
Eventually …. 



Backpropagation	

•  Goal	minimize	network	error:	

Each	partial	derivative	of	grad	E	is	made	up	of	derivatives	of	succesive	activation	functions	and	weights	

	

	

IDEA:	iteratively	follow	in	the	direction	of	the	negative	gradient	(steepest	descent	direction)	until	we	arrive	at	the	stopping	criterion:	

	

	

To	achieve	this,	at	each	step,	we	update	the	weights	based	on	its	corresponding	partial	derivative		

	

Thus	the	updating	rule	is...		
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Gauss	-	Newton	

•  Thus	the	updating	rule	is	:		

	

					but	it	can	be	computationally	slow...	

	

•  On	the	other	hand	Gauss-Newton	is	computationally	faster	but	not	always	stable		
(not	always	invertible	H)	
	
	

•  We	adapt	it	using	the	Levenberg-Marquardt	algorithm	
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NN	in	general	
•  Actually	therefore	NN	are	not	very	clever.	

•  They	make	thousands	and	thousands	of	mistakes	from	which	
they	learn	and	forget	each	time	and	eventually	make	the	
network	perform	better	

•  eventually	they	learn	and	produce	effective	classifiers	for	
many	real	applications	



Design	Issues	and	Challenges	
•  Regularization	–	preprocess	data	to	avoid	noisy	outputs	

•  Over-fitting	/	Under-fitting		

•  Vanishing/Exploding	Gradient	



If	f(x)	is	linear,	the	NN	can	only	draw	straight		decision	
boundaries	(even	if	there	are	many	layers	of	units)	



NNs	use	nonlinear	f(x)	so	they	can	draw	complex	
boundaries,	but	keep	the	data	unchanged	



Overfitting	
Key	issue	with	machine	learning:	
How	well	can	our	model	generalize	
from	training	data	to	new	data?	



The	Vanishing	Gradient	Problem	
• Deep	neural	networks	use	backpropagation.	
•  Back	propagation	uses	the	chain	rule.	
•  The	chain	rule	multiplies	derivatives.	

•  Often	these	derivatives	between	0	and	1.	

•  As	the	chain	gets	longer,	products	get	smaller	

•  until	they	disappear.	

Wolfram|Alpha	

Derivative	of	sigmoid	function	



Exploding	Gradient	
•  With	gradients	larger	than	1,	

•  you	encounter	the	opposite	problem	

•  with	products	becoming	larger	and	larger		

•  as	the	chain	becomes	longer	and	longer,	

• causing	overlarge	updates	to	parameters.	

• This	is	the	exploding	gradient	problem.	



A	classic	activation	function		
Sigmoid	Function	

The	sigmoid	function	ranges	from	0	to	1.	
Most	of	the	time,	it’s	much	closer	to	one	
extreme	than	the	other.	This	can	be	nice	if	
you	want	to	classify	something	as	either	0	
or	1.	
	
Also	called	the	logistic	function,	this	is	a	
key	component	of	logistic	regression.		
	
Given	the	shape	of	the	curve,	it’s	no	
surprise	that	sigmoid	is	a	nonlinear	
function	



CNN	for	Image	Classification	

http://deeplearning.net/tutorial/lenet.html	



CNN	for	Image	Classification	

Convolutional	Layer	



Toward	a	CNN	-	A	convolution	example	



Toward	a	CNN	-	A	convolution	example	



CNN	for	Image	Classification	

Convolutional	Layer	



CNN	for	Image	Classification	

Convolutional	Layer	



CNN	for	Image	Classification	

Convolutional	Layer	



CNN	for	Image	Classification	

Convolutional	Layer	



CNN	for	Image	Classification	

Max	Pooling	



CNN	for	Image	Classification	

Max	Pooling	



CNN	for	Image	Classification	

Max	Pooling	



CNN	for	Image	Classification	

Max	Pooling	



Deep	CNN	for	Image	Classification	

http://deeplearning.net/tutorial/lenet.html	



vs	a	Classical	architectures	

Ximantis	-	The	Future	of	Traffic	

	CNN		



US	101	
Actual	data	vs	stochastic	vs	AI	



US-880	



Typical	NN	for	time	series	type	applications	

Ximantis	-	The	Future	of	Traffic	



RNN	

Ximantis	-	The	Future	of	Traffic	

As	the	chain	grows	RNNs	are	not	able	to	remember	older	lessons/training	



RNN	

Ximantis	-	The	Future	of	Traffic	

The	repeating	module	in	a	RNN	contains	a	tanh	only	



RNN	&	LSTMs	

Ximantis	-	The	Future	of	Traffic	

(Long	Short	Term	Memory)	network	

Instead	the	repeating	module	of	a	LSTM	contains	4	interacting	layers	



RNN	&	LSTMs	

Ximantis	-	The	Future	of	Traffic	

(Long	Short	Term	Memory)	network	

Instead	the	repeating	module	of	a	LSTM	contains	4	interacting	layers	



Forecast	

•  15	min	ahead	

Ximantis	-	The	Future	of	Traffic	



Forecast	

•  15	min	ahead	

•  30	min	ahead	

Ximantis	-	The	Future	of	Traffic	



Forecast	

•  15	min	ahead	

•  30	min	ahead	

•  60	min	ahead	

Ximantis	-	The	Future	of	Traffic	



Forecast	

•  15	min	ahead	

•  30	min	ahead	

•  60	min	ahead	

Ximantis	-	The	Future	of	Traffic	



Forecast	

•  15	min	ahead	

•  30	min	ahead	

•  60	min	ahead	

•  120	min	...	

Ximantis	-	The	Future	of	Traffic	



Traffic	Heat	Maps		

Ximantis	-	The	Future	of	Traffic	



Last	word...	

Ximantis	-	The	Future	of	Traffic	



Last	word...	Attention!	

•  Look	into	Attention	networks!	
	

Could	be	better	suited	for	your	application	than		
LSTMs,	GRUs,	SAEs,	etc...	

Ximantis	-	The	Future	of	Traffic	



Thank 
you! 
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