Challenges of LHC Computing

Helge Meinhard / CERN-IT RAPID 2018, Dortmund (Germany) 21-Nov-2018

Contributions courtesy by Simone Campana / CERN-IT Bernd Panzer-Steindel / CERN-IT

Outline

- Computing needs for Run 3 and an outlook to Run 4
- Technology and markets
- Conclusions

Run 3 for ATLAS and CMS

- Similar conditions with respect to Run 2 with caveats
- Expect luminosity of up to 80 fb⁻¹ per year (2018 was 66 fb⁻¹)
- More virtual luminosity means longer leveling = more events at high pileup
- Assume 50% more computing needed

Parameter	BCMS	BCMS pushed a bit	Nominal - pushed	Comments 10
Energy [TeV]	7.0	7.0	7.0	10
* (1/2/5/8) [m]	0.3 / 10 / 0.3 / 3	0.3/ 10 / 0.3 / 3	0.3/ 10 / 0.3 / 3	Plus beta* levelling to 25 cm
ong-range separation [sigma] - assumed emittance	9.2 sigma - 2.5 um	9.2 sigma - 2.5 um	9.2 sigma - 2.5 um	
nitial Half X-angle (1/2/5/8) [µrad]	-160 / 120 / 160 / -150	-160 / 120 / 160 / -150	-205 / 120 / 205 / -150	Anti-levelled to 130 urad
Number of colliding bunches (1/5)	2592	2592	2748	BCMS - 240 bunches/injection from SPS
Bunch population	1.3e11	1.4e11	1.7e11*	* ruled out, initialy at least, by e-cloud heat load
Emittance into Stable Beams [µm]	2.5	2.6	3.0	
Bunch length [nc] 4 sigma	1.1	1.1	11	
/irtual Luminosity (L0)	2.3e34	2.6e34	3.2e34	
evelling time (hours)	2.0	3.8	7.9	
uminosity per 12 hour fill (burn only)	0.65	0.7	0.8	
uminosity lifetime (tauL) - end levelling	13 hours	14 hours	15 hours	Approx assuming burn only
ntegrated/140 day year (fb-1)	65 - 70	70 - 75	85 - 90	NB Ballpark!

http://lhc-commissioning.web.cern.ch/lhccommissioning/performance/Run-3performance.htm

LHCb towards Run 3

Run 3 is a major upgrade of the detector and the computing infrastructure

- Level 0 hardware trigger to be replaced by software trigger with 30 MHz input rate
- Major re-engineering of software ongoing to cope with the increased load especially in the high level software trigger

Work towards HL-LHC will be far less demanding than Run 3 upgrade

ALICE Upgrade for Run 3 and 4

2 orders of magnitude more data from up to 500 million detector channels

Continuous (trigger-less) readout – first of its kind – with up to 3.4 TB/s from detector

New O2 facility for data processing and compression – 1500 CPU/GPU nodes, 60 PB storage

Steady progress on all O2 elements, including software framework (ALFA) and hardware components

Resources growth corresponding to fixed funding (20% year on year) should be sufficient for Run 3

Run-3 Resource Evolution

- 2010-2018 pledges
- 2021 assume 1.5 x 2018

Overall, Run-3 resource needs look compatible with flat spending in the next years

The HL-LHC Computing Challenge

- HL-LHC needs for ATLAS and CMS are much above the expected hardware technology evolution (15% to 20%/yr) and funding (flat)
- The main challenge is storage hence focus in the WLCG strategy

Server Cost Evolution

Disk servers: very hard to estimate real costs of HDDs

e.g. there are 70 different 6TB HDD models in the market with a price difference of a factor 2.5. At CERN we saw price differences of a factor >2 between low street prices and purchase prices; more variations between 6 TB and 8TB disks

Based on CERN procurements during the last years: current assumption:

- Future CPU server price/performance improvement: 15%/year
- Future Disk server price/space improvement: 20%/year

Device Markets

Have We Reached Peak Smartphone?

Worldwide smartphone shipments and year-over-year shipment growth

PCs, notebooks and tablets sales declining constantly

- Smartphones sales are flat
- Attractiveness of replacement is decreasing
 - Only marginal differences between smartphone models and generations, small and little innovation
 - Consequence: Increased lifetime

• Overall computing device market is flat

Becomes replacement market

Worldwide Device Shipments by Device Type,

World "Internet" Population

- Limited growth rates for internet devices due to limited growth rate of internet users
- Already high market penetration in the population
 - 68% of the world population have a phone
 - More mobile connections than humans
- Strong saturation effects

Processor Technology

We have a wide range of options in research to continue Moore's Law

NOLOGY AND MANUFACTURING DA

- Intel has problems with their 10 nm process
- TSMC building fab 18 for their 5nm process, will be finished in 2020; 950'000 m² for \$17B
- There is no norm for the process names: 10 nm Intel compares to a 7 nm Samsung/TSMC process
- Below 7 nm new technologies are needed (nanowires, non-silicon materials), very expensive

Industry FinFET Lithography Roadmap, HVM Start

Data announced by companies during conference calls, press briefings and in press releases

	2016 2017 1H 2H 14LPP 14 nm 14		2018		2019		2020		2021	
		1H	2H	1H	2H	lН	2H	lн	2H	
GlobalFoundries		14LP	Р		7nm DUV	7	'nm wit	h EUV*		
Intel	14 nm 14 nm+		1	4 nm+- 10 nm	+		10 n 10 nr	m+ m++		
Samsung	14LPP 14LPC	10	DLPE	10	LPP	8LPP 10LPU	7L	PP	6 nr	m* (?)
SMIC	28 nm**	10LPC 10LPP 10LPU 7LPP 6 nn 14 nm in development								
TSMC	CLN16FF+ CLN16FFC	CLI	N10FF I16FFC	CLN	N7FF 12FFC	CLN12FFC/ CLN12ULP	CLN	7FF+	5 nr	m* (?)
UMC	28 nm**		14nm			no da	ata			
*Exact timing not ann **Planar	ounced									

21-Nov-2018

Helge Meinhard (at) CERN.ch - LHC Computing Challenges

New Processor Architectures

- Plethora of new processor designs, all with a focus on Machine Learning:
 - Intel: Mobileye EyeQ5 (vision processing, autonomous cars), Nervana Neural Network Processor, Movidius MyriadX VPU
 - ARM: Project Trillium, Machine Learning processor, Object Detection processor
 - Graphcore IPU (Intelligent Processing Unit)
 - Google second generation of Tensor Processing Unit TPU
 - NeuPro AI processor from CEVA
 - Neuromorphic chips from IBM (TrueNorth, 64 M neurons + 16 B synapsis) and Intel (Loihi, 130 K neurons + 130 M synapsis)
 - Nvidia enhancing their graphics cards, Titan V (110 Tflops Deep Learning), Xavier (SoC, 20 TOPS, vision accelerator)
- All high-end smartphones are integrating AI chip enhancements (Qualcomm-neural processing engine, Apple- A11 Bionic chip, etc.)
 - The market for these special chips will reach \$5-10 B in 2022
- The keyword is LOCAL data processing (also major impact on IoT)
 - Much less network, cloud storage and cloud processing needed

Accelerators

GPUs:

- Dedicated graphics cards market leader is Nvidia
- High end card Tesla V100 (14 TFlops SP, 110 TFlops ML, 12 nm process)
- Gaming key driver for the market (plus AI and crypto mining)
- Large price increases (up to x2), crypto mining + high memory prices
- Licence policy: no gamer cards in the data centre
 - GTX 1080 TI: \$700, Tesla V100: \$9'000, but also DP performance 20-30 higher

Other accelerators:

- Intel stopped the Xeon Phi line (Knights Mill last product)
 - No replacement in sight
- Microsoft Project brainwave, based on Intel (Altera) Stratix FPGA
- Xilinx ACAP, Project Everest many-core SoC, programmable DSPs
 - 50 B transistors, TSMC 7 nm process
- Chinese Matrix-2000 DSP accelerator for Exascale HPC
 - Current No 1 on Top 500

Quantum and Optical Computing

- Considerable progress during the last 2 years; number of qubits rising sharply
 - Intel 49-qubit, IBM 50, Google 72 for a quantum gate computer
 - D-wave 2000 qubits, but not a general quantum computer (e.g. no shor's algorithm, no factorization)
- Various implementations from ion traps to silicon, focus is on silicon to re-use the fabrication process of standard chips
 - Coherence time is still well below 1 ms, limits the time for quantum calculations
- Key problem is the error handling: mitigate by combining qubits
 - N physical qubits == one logical qubit, where N varies between 10 and 10'000
 - Use error correction in software, deal with approximate results
 - Machine learning algorithms
- Programming model is completely new; not clear how many algorithms can be 'converted' for a quantum computer; very, very high cost structure
- Prognosis: Irrelevant for HL-LHC

Renaissance of optical computing, this time focused on neural networks

- Optalysis: First implementation of a Convolutional Neural Network with Optical Processing Technology
- Lightelligence: Deep learning with coherent nanophotonics circuits
- Lightmatter: Photonics for Al

Memory: DRAM

DRAM Roadmap Plan vs. Reality

DRAM Technology Review

TECHINSIGHTS

DRAM Process Node Roadmap (Manufacturers)

- DRAM scaling slowed down
- Capacitor aspect ratio increases exponentially with smaller cell size
- Much higher fabrication costs
- 3D DRAM not yet available

- ~ \$70 B market
- DRAM price increase during late 2016 to early 2018: ~120%

- Samsung 18nm DRAM process (36-54nm pitch), considerable density improvement
- Linear rather than exponential

New Memory Technologies

PERSISTENT MEMORY

14

Technology	Comparison	
		-

					DRAM	NAND Flash
Nonvolatile	Yes	Yes	Yes	Yes	No	Yes
Endurance	1012	1012	106	108	1015	103
Write Time	100ns	~10ns	~50ns	~75ns	10ns	10µs
Read Time	70ns	IOns	10ns	20ns	IOns	25µs
Power Consumption	Low	Medium/Low	Low	Medium	Very High	Very High
Cell Size (f ²)	15-20	6-12	6-12	1-4	6-10	4
Cost (\$/Gb)	\$10/Gb	\$30-70/Gb	Currently High	\$0.16/Gb	\$0.6/Gb	\$0.03/Gb

- Several contenders for a new memory technology
 - Ideally replacing DRAM and NAND at the same time
- No cost effective solution yet

© 2018 SNIA Persistent Memory Summit. All Rights Reserved.

- Resistive RAM, 40nm process, Fujitsu/Panasonic
 - Aimed at Neuromorphic Computing
- Magnetic RAM, 80nm process, Everspin, first 1-2GB SSDs
- PCM Intel Optane, in production, but focus not clear
- Ferroelectric RAM, very small scale products, difficult to scale

Figure: NAND Flash Factories Map in 2020

NAND Storage

• ~ \$60 B market

Source: DRAMeXchange, Jan., 2018

- Fabrication moved from 2D to 3D: 64 layers in the market, 96 layer production started, 128 layers expected for 2020
- NAND prices increased until early 2018, high request for smartphones and SSDs (Apple buys 20% of the world-wide NANDs), significant price decay since then
 - New Chinese fabs have started production
- In 2017 largest consumer of NAND chips were SSDs (surpassing smartphones)
- 4-bit cells are now feasible with 3D: ECC code easier; lab demos exist with hundreds of layers
- Investment in 3D fabrication process up to 5x higher than 2D: ~ \$10 B for fabrication facility
- Technical challenges: > 64 layers show exponential scaling problems (current density, cell uniformity)
 - A wafer stays up to 3 month in the fab before the 100 defect-free layers are done
 - Density improvements are now linear, adding 8/16/32 layers

Capacity Growth Outlook

- 9 platter in one drive, 14 TB capacity today, Helium-filled
- Max with SMR is probably around 20 TB per drive

Hard Disk Storage I

Seagate Roadmap for Multi-Actuator HDDs

Seagate: multiple actuators per HDD to keep IOPS/TB constant

Seagate HAMR first products now in 2020

How HAMR Works

 Heat from laser lowers the energy barrier to write on media and magnets can be switched with smaller magnetic field

 When media cools, the data is harder to erase

Western Digital new density approach: MAMR production in 2019

How MAMR Works

 Microwave fields emitted by a Spin Torque Oscillator (STO) located near the write pole allows writing of perpendicular media at lower magnetic fields

21-Nov-2018

Helge Meinhard (at) CERN.ch - LHC Computing Challenges

Backblaze Average Cost per Drive Size

By Quarter: Q1 2009 - Q2 2017

Hard Disk Storage II

Backblaze Average Cost per GB for Hard Drives

- Only growth: near-line disks (high capacity), HEP and cloud storage area
- Desktop, mobile, enterprise replaced by SSDs
- Price/space evolution flattening

21-Nov-2018

HDD vs. Flash SSD \$/TB Annual Takedown Trend

MAMR will enable continued \$/TB advantage over Flash SSDs

Solid-state Disk Storage

- SSD versus HDD: price difference in capacity drives will stay high for the foreseeable future
- Slowdown of yearly price improvements in all areas

Tape Storage I

Areal Density Trends

Chart provided courtesy of the Information Storage Industry Consortium (INSIC)

- Technology change to Tunnel Magnetoresistive heads (used already in HDDs) for IBM TS1155 and LTO-8
- Quite some headroom for density improvements, x10 compared to HDD

Unit Shipments: Calendar Year

Tape Storage II

- LTO tape market domination >95%
- Enterprise tapes 4%
- 44 EB of tape media in 2017 compared to 750 EB HDD
- Linear increase in EB sold per year

- Declining media shipment since 10 years
- Factor 2 decrease in #drives sold over the last 4 years
- Only two suppliers of media: Fujifilm and Sony
 - Fujifilm only supplier in the US (patent 'war')
- Only IBM left for LTO and Enterprise drives

Total Capacity Shipped: Calendar Year

Server Market I

- Total server market revenues: \$20.7 B in Q4 2017, 2.8 M servers shipped
- Large revenue jump: general price increases, memory price explosion, big Iron sales (z14 IBM), HPC/AI investment
- Market split into three parts based on cost per server:
 - < \$25'000: \$15.8 B (HEP buys < \$5'000/server)
 - \$25k-\$250k: \$1.9 B
 - > \$250k: \$2.9 B
- Intel takes 85% of the revenues and ships 99.3 % of the x86 servers processors
- The increase in units sold is due to several factors: new Skylake architecture, shift from DELL/HP/etc to cheaper ODM sellers, high demand for high-end machines with GPUs (> \$25'000 per unit)
- Hyperscale data centres (> 100'000 servers) grew in 2017 from 300 to 390
- Amazon, Google, Microsoft, IBM have at least 45 centres each

Server Market II

- Intel x86 dominating server market, 99.3% of server units
- Possible contenders:
- IBM Power9
 - Aimed at high-end server and HPC/AI market (combined with Nvidia GPUs)
 - Not power efficient
 - 14 nm process, no plans for 10...7 nm
- AMD EPYC, market penetration rose in 2018, but still relatively low
- ShenWei 260-core processor (based on alpha, 6 Tflops SP)
 - China only, TaihuLight supercomputer; public market?

ARM:

- Applied Micro (now Ampere): new design 32 core 3.3 GHz end 2018
- Qualcomm Centriq: 48-core, 2.6 GHz, 10nm process, first contract with cloud gaming company
 - Doubts about Qualcomm commitment to the project
- Cavium (now Marvell): ThunderX2
 - Available in techlab, power/HS06 similar to Intel Broadwell, price/performance x2 off)

Conclusions

- Run 3 under control, at least as far as ATLAS and CMS (no longer the big experiments!) are concerned
- Run 4 remains a challenge both for CPU and even more so for disk
- Technology progress per se is still good, but numerous obstacles ahead (CPU, RAM, NAND)
- Novel processors and accelerators difficult to exploit for HEP
- Price/performance advances are slowing down, cost of advances increases exponentially, facing stagnating demand
- Key computing markets in the hand of very few companies
- Technologies HEP relies on under pressure (e.g. HDDs, tapes)
- "Moore's Law" at risk not because of physics or technology, but for business, financial and economic reasons!

Technology Tracking References

http://www.digitaltvnews.net/?p=30009

https://www.statista.com/chart/12798/global-smartphone-shipments/

http://www.transformingnetworkinfrastructure.com/topics/virtualization/articles/437082-almost-13-billion-cloud-waste-predicted-2018.htm

https://www.gartner.com/newsroom/id/3845563

https://www.semiconductors.org/news/2018/01/02/global_sales_report_2017/global_semiconductor_sales_increase_21.5_percent_year_to_year_in_november/

https://www.qstar.com/index.php/ltfs-linear-tape-file-system/

http://techinsights.com/about-techinsights/overview/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielec trics/

https://www.extremetech.com/computing/249075-foundry-futures-tsmc-samsung-globalfoundries-intel-gear-7nm-beyond

https://www.quora.com/When-is-Samsung-going-to-produce-7nm-and-is-it-comparable-to-Intel-10nm-in-terms-of-performance

https://www.neogaf.com/threads/glofo-7nm-details-revealed-the-most-likely-process-node-for-the-next-gen-consoles.1402083/

http://www.icinsights.com/news/bulletins/Semiconductor-Shipments-Forecast-To-Exceed-1-Trillion-Devices-In-2018/

https://www.forbes.com/sites/tomcoughlin/2018/02/05/hdd-growth-in-nearline-markets/2/#66cf02aa3e39

http://www.theregister.co.uk/2018/03/21/seagate_to_drop_multiactuator_hamr_in_2020/

https://www.theregister.co.uk/2017/12/19/seagate_disk_drive_multi_actuator/

http://www.tomshardware.com/news/seagate-wd-hamr-mamr-20tb,35821.html

https://www.extremetech.com/computing/266031-ibms-power9-dent-x86-server-market-oems-prep-new-systems-emphasize-gpu-compute

https://www.nextplatform.com/2018/03/01/server-market-booms-last/

https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte

https://www.theregister.co.uk/2017/12/22/bit_price_decline_and_computestorage_closeness_to_send_enterprise_flash_use_sky_high/ https://hblok.net/blog/posts/2017/12/

https://www.businesswire.com/news/home/20180314005070/en/Record-Breaking-Amount-Total-Tape-Capacity-Shipments

https://www.dramexchange.com/WeeklyResearch/Post/5/4871.html

https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/14_PM_Summit_18_Analysts_Session_Oros_Final_Post_UPDATED_R2 .pdf

https://marketrealist.com/2018/01/micron-optimistic-falling-nand-prices

https://www.nextplatform.com/2018/02/09/just-large-can-nvidias-datacenter-business-grow/

https://www.eetimes.com/author.asp?section_id=36&doc_id=1331415

CERN