TrackML, the Tracking Machine Learning challenge

David Rousseau

LAL-Orsay

rousseau@lal.in2p3.fr @dhpmrou

Dortmund RAPID workshop, 19th Nov 2018

Run 1 situation: 20 parasitic collisions High Lumi-LHC : 200 parasitic collisions

TrackML, David Rousseau, 19/11/2018, Dortmund

Tracking crisis

Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC

Track**//1Ĺ**

- HL-LHC (phase 2) perspective : increased pileup
 :Run 1 (2012): <>~20, Run 2 (2015): <>~30,Phase 2 (2025): <>~150
- CPU time quadratic/exponential extrapolation (difficult to quote any number)
- □ Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
- >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed ?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)
- →Tracking challenge May-November 2018
- Follow us on twitter @trackmllhc !

David Rousseau, 19/11/2018, Dortmund

Why is it difficult?

100'000 to group into 10'000 tracks of 10 points

- → $\sim 10^{500'000}$ combinations
- $\circ \Rightarrow$ brute force has (really) no chance
- \square Precision of the points : ${\sim}50\mu m$ on a volume ${\sim}40~m^3$
 - \rightarrow 3 10¹⁴ voxels!

Track[/]

- 2D projection →2 10^9 pixels !
- $o \Rightarrow$ image recognition algorithm have (really) no chance
- Not a classical problem

6

6

Classic HEP Algorithms

- Pattern : connect 3D points into tracks
- Essentially combinatorial approach

ͳͷ·ͻϲϷ;**Γ**∕

- Tracks are (not perfect) helices pointing (approximately) to the origin
- Challenge : explore completely new approaches
- (not part of the challenge : given the points, estimate the track parameters)

An early attempt

ALEPH

known

- Losely inspired from Traveling Salesman Problem with NN by Hopfield & Tank Biological Cybernetics 52 (1985) 141. or with Minimal Tree Span Cassel & Kowalski Nucl Inst; and Meth 185 (1981) 235
- (large litterature since, e.g. Neural Combinatorial Optimization with reinforcement learning, Bello et al Google Brain 1611.0994)
- □ Full implementation in ALEPH Stimpfl & Garrido (1990) Computer Physics Comm. 64 (1991) 46.
- However never deployed

Aparté on ML in HEP history

Computer Physics Communications 49 (1988) 429-448 North-Holland, Amsterdam

NEURAL NETWORKS AND CELLULAR AUTOMATA IN EXPERIMENTAL HIGH ENERGY PHYSICS

B. DENBY

Laboratoire de l'Accélérateur Linéaire, Orsay, France

Received 20 September 1987; in revised form 28 December 1987

- □ 1987 Very first Neural Net in HEP paper known
- NN for tracking and calo clustering
- B. Denby then moved from Delphi at LEP to CDF at Tevatron. He still active outside HEP: 2017 analysis of ultrasonic image of the tongue
- 1992 JetNet Carsten Peterson, Thorsteinn Rognvaldsson (Lund U.), Leif Lonnblad (CERN) (~500 citations) really started NN use in HEP

TrackML, David Rousseau, 19/11/2018, Dor

Bruce Denby

Deep Learning success : NOVA nu

From domain to challenge and back Trock 🖓 TĹ 📗 Challenge Challenge Domain e.g. HEP organisation dataset. metric. 18 months submission spec. Problem Problem simplify The Domain crowd experts Kaggle: Except for the forum, solves solve no interaction between participants, 4 months the the domain nor between participants and organisers challenge problem \rightarrow RAMP problem >n months/years? reimport Solution Solution

TrackML, David Rousseau, 19/11/2018, Dortmund

TrackML in a nutshell

- Accurate simulation engine (ACTS https://gitlab.cern.ch/acts/acts-core) to produce realistic events
 - One file with list of 3D points
 - Ground truth : one file with point to particle association
 - Ground truth auxiliary : true particle parameter (origin, direction, curvature)
 - Typical events with ~200 parasitic collisions (~10.000 tracks/event)
- Large training sample 10k events, 0.1 billion tracks, 1 billion points, ~100GByte
- Accuracy phase (May to August 2018) on Kaggle
 - Participants are given the test sample (with usual split for public and private leaderboard) and run the evaluation to find the tracks
 - They should upload the tracks they have found
 - A track is a list of 3D points
 - Score : fraction of points correctly grouped together
 - Evaluation on test sample with per-mille precision on 100 event
- Throughput phase Sep to Nov 2018 on Codalab
 - Strong CPU incentive

Datasets

□ Hit file (measured position mm)

	hit_id	x	У	Z	volume_id	layer_id	module_id
0	1	-62.663200	-3.05090	-1502.5	7	2	1
1	2	-66.124702	-1.36730	-1502.5	7	2	1
2	3	-63.697701	1.73267	-1502.5	7	2	1
3	4	-82.501801	-14.09150	-1502.5	7	2	1
4	5	-74.343399	0.84469	-1502.5	7	2	1

Truth file

Trock

(true position mm

particle momentum GeV)

	hit_i	id	particle_id	tx	ty	tz	tpx	tpy	tpz	weight
()	1	328762978956476416	-62.661499	-3.048720	-1502.5	-1.025760	-0.032316	-24.53690	0.000014
∶k t	o scroll	ou _	tput; double click to hide	-66.123901	-1.376350	-1502.5	-0.634752	0.007755	-14.21880	0.00008
1	2	3	72094565116411904	-63.690601	1.726280	-1502.5	-0.826153	0.040302	-19.25260	0.000013
3	3	4	238697583478833152	-82.507202	-14.093000	-1502.5	-0.244242	-0.062864	-4.57011	0.000006
4	1	5	0	-74.342796	0.844152	-1502.5	-166440.000000	2483.800049	-986048.00000	0.000000

TrackML, David Rousseau, 19/11/2018, Dortmund

Datasets

charge

Particle file origin vertex (mm) momentum (GeV)

Track

	particle_id	vx	vy	vz	рх	ру	pz	q	nhits
0	4503668346847232	-0.024934	-0.014566	-11.263	-0.055269	0.323272	-0.203492	-1	3
1	4503737066323968	-0.024934	-0.014566	-11.263	-0.948125	0.470892	2.010060	1	10
2	4503805785800704	-0.024934	-0.014566	-11.263	-0.886484	0.105749	0.683881	-1	10
3	4503874505277440	-0.024934	-0.014566	-11.263	0.257539	-0.676718	0.991616	1	11
4	4503943224754176	-0.024934	-0.014566	-11.263	16.439400	-15.548900	-39.824902	1	11

(note : we do not ask participant to reconstruct these track parameters but these could be useful latent variables)

□ (static)Detector file center position (mm) 3x3 rotation matrix

	volume_id	layer_id	module_id	сх	су	CZ	rot_xu	rot_xv	rot_xw	ro
0	6	2	1	-65.7965	-5.17830	-1502.5	0.078459	-0.996917	0.0	-0.99
1	6	2	2	-139.8510	-6.46568	-1502.0	0.046183	-0.998933	0.0	-0.99
2	6	2	3	-138.6570	-19.34190	-1498.0	0.138156	-0.990410	0.0	-0.99
3	6	2	4	-64.1764	-15.40740	-1498.0	0.233445	-0.972370	0.0	-0.97:

TrackIVIL, David Rousseau, 19/11/2018, Dortmund

Score

2017 CMS tracker Technical Design Report : Chapter 6 expected performance 31 pages 58 figures

Trac

ATLAS Si strip Technical Design Report Chapter 4 ITk Performance and Devrice Report Studios, E4, page 2207

Track evaluation

good track not so good track

many compatible short tracks hits

completeness

uniqueness

Trock

shared hits

bad fit quality,

holes

outliers

low χ^2 /ndf

small impact parameter (for primaries)

clusters are compatible

Big decision : score is \sim « the weighted fraction of hits correctly associated »

Hit weighting

Weighted track score

- Weight_{order}: more emphasis on first and last hits
- Weight_{pt}: more emphasis on high pT tracks
- Weight=0 for noise hits or hits from particle with <=3 hits</p>

David Rousseau, LRI-Orsay Seminar, 13th March 2018

Track scoring

Overall scoring defined at hit level

Loop on reco tracks

Track

- Require >50% of hits from same true particle
- Require >50% of hits from this true particle in this reco track
- At this point 1 1 relationship between true and reco tracks
- Sum the weights of the intersection (hits belonging both to true and reco track)
- Event score normalised to the sum of weights of all the hits
 - \rightarrow ideal algorithm has score==1.
- □ Final score averaged of 100 events→statistical precision ~0.1%

Real life vs challenge

- 1. Wide type of physics events
- 2. Full detailed Geant 4 / data
- 3. Detailed dead matter description
- 4. Complex geometry (tilted modules, double layers, misalignments...)
- 5. Hit merging
- 6. Allow shared hits
- 7. Output is hit clustering, track parameter and covariance matrix
- 8. Multiple metrics (see TDR's)

- 1. One event type (ttbar)
- 2. ACTS (MS, energy loss, hadronic interaction, solenoidal magnetic field, inefficiency)
- 3. Cylinders and slabs
- 4. Simple, ideal, geometry (cylinders and disks)
- 5. No hit merging
- 6. Disallow shared hits
- 7. Output is hit clustering
- 8. Single number metrics

Simpler, but not too simple!

TrackML, David Rousseau, 19/11/2018, Dortmund

Evolution of leaderboard

	1	_	Top Quarks	??	0.92182	10	19d	
1	2	_	outrunner		0.90302	9	18d	
T ₁ °-2e-	3	_	Sergey Gorbunov		0.89353	6	18d	Ħ
	4	_	demelian	1	0.87079	35	1mo	
	5	_	Edwin Steiner	1	0.86395	5	18d	
	6	_	Komaki	Sugar Sugar	0.83127	22	18d	
	7	_	Yuval & Trian	I	0.80414	56	18d	
	8	_	bestfitting		0.80341	6	18d	
	9	_	DBSCAN forever		0.80114	23	18d	
	10	_	Zidmie & KhaVo	@	0.76320	26	18d	
	11	_	Andrea Lonza	1	0.75845	15	18d	
	12	_	Finnies	🔊 👬	0.74827	56	18d	
	13	_	Rei Matsuzaki		0.74035	12	18d	
	14	_	Mickey	1	0.73217	10	2mo	
	15	_	Vicens Gaitan		0.70429	19	1mo	
	16	_	Robert		0.69955	3	21d	
	17	_	Yuval-CPMP tribute band		0.69364	20	20d	
	18	_	N. Hi. Bouzu	999	0.67573	9	22d	
	19	_	Steins;Gate	P 🚸 📓	0.66763	12	19d	
	20	▲ 1	Victor Nedel'ko	1	0.66723	4	2mo	25

Primary track efficiency : starting

tracks : 125658/226597)

vertex r_0 (mm)

HACKIVIL, DAVIU ROUSSEAU, 13/11/2010, DUILIHUHU

Primary track efficiency TopQuarks #1

racks: 73939/75099)

vertex r₀ (mm)

TrackML, David Rousseau, 19/11/2018, Dortmund

Secondary efficiency Nedelko #20

ciency (n_{rec}/n_{true}) of `VictorNedelko 667238 3#20` for secondary particles for which $n_{particle hits} \ge 4$ (rec tracks : 10/106)

Secondary efficiency TopQuarks #1

fficiency (n_{rec}/n_{true}) of `icecuber 921825 3#01` for secondary particles for which $n_{particle hits} \ge 4$ (rec tracks : 6711/1063

A few competitors

icecube #1 92.2 % (master student) : combinatorial Wins outrusses "7"

outrunner #2 90.3% Deep Learning approach

• Very innovative!

• But brute force : takes one full day per event !

Wins 500

- Sergevolution we want to be a sergevolution of the serge king trigger experts Winst
 - Frian #7 80.4% : innovative clustering
- Wins CPMP #9 80.1% : DBSCAN unsupervised clustering algorithm

BSCAN in starting kit, with a 20% score, because in Neutonly required a few lines

Finnies #12 74.8% : use LSTM

TrackML, David Rousseau, 19/11/2018, Dortmund

Average Max Wall clock timePeak memory usage7m17s2.78GB11m20s4.07GB

Phase 1 outrunner

Pure ML approach using python & Keras

- Event with ${\bf N}$ hits
- predict $\mathbf{N} \times \mathbf{N}$ relationships between hits, connect pairs when their probability is 1 (rather than 0)

Training:

- 5 hidden layers with 4k 2k 2k 2k 1k
- 27 input variables per pair:

x, y , z, counts, sum(cells.value) per hit two unit vectors per hit for direction from cell information 4 parameters for linear (z_0) and helical compatibility

Prediction:

- predict relationship probability

Reconstruct

- starting from one hit, find highest probability pair, then add pairwise hits
- test new hit for compatibility

 ϕ_{max}

1.2 min on single core 2.6 GHz CPU CPP

cell₁ cell₂ cell₃ cell₄

 $h_1 h_2 h_3 h_4 h_5 h_6 h_7 h_8 h_9 h_{10} h_{11} h_{12} h_{13} h_{14}$

- A combinatorial algorithm, based on the track ٠ following method
- No search branches
- Simple track model: local 3-hit helix ٠

Phase 1 Sergey Gorbunov 🤵

Fast data access ٠

Primary tracklets

-π

C++

array of cell hits

array of cells

Zma

Zmin

{first hit; nhits}

 φ_{min}

#7 Yuval & Trian Trock III

- 4. Merge with tracks already found
- 5. Iterate to 1

TrackML, David Rousseau, 19/11/2018, Dortmund

Throughput Phase

Launched 6th Sep 2018 until 12th March 2019 on Codalab

Dataset

- Not identical
- Detector is the same
- Simplification:
 - Only primary particles enter the scoring (much less particles not pointing approximately to 0 0 0)
- **Features** fix
 - o Beam spot sigma_z 5.5mm→5.5 cm
 - o Module thickness halved
 - Looping particles removed
 - Electrons multiple scatterign fixed (was causing 0.5% « crazy » tracks

Schematic

Throughput scoring

Ranking score :

Tracki

- 0 if time >600 s or accuracy <50%
- $\sqrt{\log(1 + 600/time)} * (accuracy 0.5)^2$
- Documented software of first phase #1 #2 #3 #7 #9 #11 #12 released
 - Can be used as starting point but need retuning

Throughput phase LB

Track

	RESULTS									
#	User	Entries	Date of Last Entry	score 🔺	accuracy_mean	accuracy_std ▲	computation time (sec) 🔺	computation speed (sec/event) ▲	Duration A	
1	fastrack	22	10/19/18	1.0009 (1)	0.938 (1)	0.00 (7)	161.88 (10)	3.24 (10)	201.00 (6)	
2	cubus	8	09/13/18	0.7719 (2)	0.895 (3)	0.01 (5)	675.35 (11)	13.51 (11)	724.00 (7)	
3	Taka	8	10/20/18	0.3934 (3)	0.906 (2)	0.00 (6)	19321.21 (15)	386.42 (15)	19744.00 (12)	
4	khavo	3	10/29/18	0.0000 (4)	0.304 (4)	0.03 (1)	18015.06 (14)	360.30 (14)	18419.00 (11)	
5	traffic_congestion	2	10/21/18	0.0000 (4)	0.082 (7)	0.01 (4)	49.67 (9)	0.99 (9)	88.00 (5)	
6	nmb	3	10/20/18	0.0000 (4)	0.123 (6)	0.02 (3)	1864.97 (12)	37.30 (12)	1940.00 (8)	
7	kara.dhara	1	10/17/18	0.0000 (4)	0.082 (7)	0.01 (4)	49.19 (3)	0.98 (3)	87.00 (4)	
8	sanjaykr10	1	10/17/18	0.0000 (4)	0.082 (7)	0.01 (4)	49.35 (5)	0.99 (5)	86.00 (3)	
9	EdmonWales	1	10/14/18	0.0000 (4)	0.082 (7)	0.01 (4)	49.23 (4)	0.98 (4)	86.00 (3)	
10	dcoldeira	1	10/13/18	0.0000 (4)	0.082 (7)	0.01 (4)	49.66 (8)	0.99 (8)	86.00 (3)	
			-	0 0000		101	11/0010 5 (- 4		

Throughput phase LB

- 113 registered, but only 3 with non zero scores, 13 with zero score
- =>disappointing participation, many hypotheses why

ͳϻϣϲͿϲ**Γ**/

- ➡ originally scheduled to end early November, postpone to the end to 12 March 2019
- Working on a « reboot » profitting from NeurIPS visibility
- On the other hand fastrack results are astonishing
 - ATLAS code recently sped up from 250s to 10s ... however this is for track pT>900 MeV ~15% of TrackML tracks

More information

- Contact : <u>trackml.contact@gmail.com</u> (or myself <u>rousseau@lal.in2p3.fr</u>)
- https://sites.google.com/site/trackmlparticle
- Twitter : @trackmllhc
- Accuracy phase @ Kaggle : <u>https://www.kaggle.com/c/trackml-particle-identification</u>
- Throughput phase @ Codalab : <u>https://competitions.codalab.org/competitions/20112</u>
 - Still running till 12th March, you can still participate !!!
 - Leaderboard prices #1 7k\$ #2 5k\$ #3 3k\$
 - Special Jury prize : another Nvidia V100, CERN invite