

Status of the $b\overline{b}4l$ sample in CMS

V. Rodríguez, J. Fernández

TOP Workshop 6/11/2018

The motivation

Interference between ttbar and single top + wb:
Very useful data to challenge new models in development

NLO corrections to the LO *tW* amplitude:

$$\mid A_{tW} \mid^2 = \mid A_{t\bar{t}} \mid^2 + \mid A_{tWb} \mid^2 + 2Re\{A_{t\bar{t}}^* \cdot A_{tWb}\}$$
 interference

The diagrams for single top are the same as very off-shell ttbar

tW interfere with $t\bar{t}$ beyond LO

- Standard calculations factorise both processes (narrow-width approx.)
- Different interference schemes used to estimate the impact of this effect
- Size of the interference depends on the phase space → large impact on searches

POWHEG bb4I (IvIvbb): *EPJC76(2016)691*

no narrow-width approx., interference is automatically handled

06/11/2018 J. Fernandez

The process: bb41

- implemented in POWHEG-BOX-RES
- NLO matrix elements for $\ell^- \overline{\nu} \ \overline{b} \ \ell^+ \nu \ b$
- full NLO accuracy in tt
 production and decay, including interference between NLO radiation,
- exact treatment of off-shell effects associated with the top-quark and W boson resonance
- unified treatment of tt and Wt production with interference at NLO
- exact spin correlations at NLO
- Born level example diagrams for $O(\alpha_S^2, \alpha_{EM}^4)$:

The discriminant

Idea from ATLAS paper:

- Take both possible combinations of b-l mass.
- For each combination take the max b-l pair, then take the minimum from the two combinations:

 $\min\{\max\{m(b_1l_1), m(b_2l_2)\}, \max\{m(b_1l_2), m(b_2l_1)\}\}$

- When *b*-jet/lepton correctly assigned: m(*bl*) ≤ mt
- Correct assignment not known a priory:
- $min\{max\{m(b1/1),m(b2/2)\},max\{m(b1/2),m(b2/1)\} \le mt$

For tWb:

- One m(bl) smaller than mt, the other could be larger
- $min\{max\{m(b1/1),m(b2/2)\},max\{m(b1/2),m(b2/1)\} \ge mt$

The discriminant

Idea from ATLAS paper:

- Take both possible combinations of b-l mass.
- For each combination take the max
 b-I pair, then take the minimum
 from the two combinations:

 $\min\{\max\{m(b_1l_1), m(b_2l_2)\}, \max\{m(b_1l_2), m(b_2l_1)\}$

For tt:

- When *b*-jet/lepton correctly assigned: m(*bl*) ≤ mt
- Correct assignment not known a priory:
- $min\{max\{m(b1/1),m(b2/2)\},max\{m(b1/2),m(b2/1)\}\} \le mt$

For tWb:

- One m(bl) smaller than mt, the other could be larger
- $min\{max\{m(b1/1),m(b2/2)\},max\{m(b1/2),m(b2/1)\} \ge mt$

do d m^{minimax} [1/GeV] Data, stat. uncertainty Full uncertainty Powheg+Pythia8 I*vIvbb Powheg+Pythia8 tt+tW (DR) Powheg+Pythia8 tt+tW (DS) MG5 aMC+Pythia8 tt+tW (DR2) 10-**ATLAS** \sqrt{s} =13 TeV, 36.1 fb⁻¹ 10^{-5} $X+dd^{\dagger}l^{\dagger}l \leftarrow qq$ Model/Data 100 200 300 400

Phys. Rev. Lett. 121 (2018) 152002

arXiv:1806.04667

The status in CMS

- Gridpack exists: file <u>location</u>, <u>POWHEG</u> datacards in <u>git</u>
 - powhegboxRES_rev3468_date20171122, taus included
- <u>Pythia8</u> configuration and UserHook <u>updated</u> for an improved FSR veto, thanks to Alexander Grohsjean, based on previous work/code by Markus and Tomas, thanks!
- Validated against arXiv:1607.04538 by A.G. and Gerrit van Onsem: thanks!!
- Integrated in CMSSW 10_2_X PR#23469, backported to 71X
- PrepID for Fall18 campaign, 50M events requested: TOP-RunIIFall18wmLHEGS-00094

Details of PrepIDs

~350s / event with o(1k) ME+PDFs weights:
 on hold, PrepID TOP-RunIIFall18wmLHEGS-00026

• ~30s / event with reduced set of ME+PDF weights (α_S variations of NNPDF3.1 NNLO): requested PrepID TOP-RunIIFall18wmLHEGS-00094

 Dataset name: b_bbar_4l_TuneCP5_13TeVpowheg-pythia8

06/11/2018 J. Fernandez

The acid test...

First look at Simulation vs Data

Preliminary plots, just taken from the

 Please take with a grain of salt

The selection

10

Particle level at RECO (data) and GEN (RIVET) level:

- m_{leplep} > 20 GeV and veto to Z peak (only SF) | m_Z m_{leplep} |<15GeV
- 2 leptons (ee/μμ/eμ): p_T (any leptón/dressed lepton) > 20 GeV
 - p_T (leading lepton) > 25 GeV, $|\eta|$ <2.4
 - Opposite charge
- **2 jets** $p_T > 30 |\eta| < 2.4$
 - Tagged as b-jets (ghost tagging at GEN, Medium b-tag WP in data)
- Any jet is cleaned from leptons satisfying cuts above in ∆R<0.4 cone
- Veto event with any additional jet p_T > 20 GeV
- Signal is extracted from Data (2016) after substracting backgrounds:
 DY, tt̄ Semilep, tt̄+X, Dibosons, Fakes(W+jets)

The plot

- Very preliminary plot
- Just plain Data and Simulation distributions normalized
- No unfolding yet, no scale factors, no anything

SF vs DF

The difference

DF distribution shifted 1 bin in MC:

 Possible bug in RIVET plugin

Conclusions(?)

 First full implementation of POWHEG bb4l process in CMSSW including Pythia8 improved FSR Veto

Preliminary sample to be submitted in Fall18 campaign 50M

 Next steps: carefully and improved tests, unfolding, full analysis...