NLO predictions for $t\bar{t}bb$ production in association with a light-jet at the LHC

Federico Buccioni

in collaboration with

S. Pozzorini M. Zoller

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

HXSWG_ttH

D Open questions in theory predictions for $t\bar{t} + b$ -jets production

D Large NLO K-factor in $pp \to t\bar{t}b\bar{b}$ and scale choices

D Open questions in theory predictions for $t\bar{t} + b$ -jets production

ightharpoonup Large NLO K-factor in $pp \to t\bar{t}b\bar{b}$ and scale choices

Discrepancies in $t\bar{t}bb$ NLOPS generators

Standard factor-2 μ_R variations $\sim 30\%$ NLO scale dependence

But: discrepancies between different NLOPS generators significantly exceed NLO scale variations

Most sensitive distribution: light-jet p_T spectrum up to 100% shape differences in the 100-200 GeV region

hypothesis on origin of NLOPS differences: interplay between PS and large NLO $t\bar{t}b\bar{b}$ K-factor which enters the PS matching in the soft regime

- (1) origin of large K-factor to be understood
- (2) Idea: improve theory accuracy constraining the NLOPS predictions by means of a benchmark $p_{T,j}$ spectrum with uncertainty well below 100% Motivation for $pp \to t\bar{t}b\bar{b}j$ at NLO QCD

This talk

 \triangleright Open questions in theory predictions for $t\bar{t}+b$ -jets production

 $lackbox{D}$ Large NLO K-factor in $pp \to t\bar{t}b\bar{b}$ and scale choices

Large $t\bar{t}b\bar{b}$ NLO K-factor

Input parameters, PDFs and scale choices

$$m_b=4.75~{\rm GeV}$$

$$m_t = 172.5 \; {\rm GeV}$$

$$\mu_{\rm R} = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}}$$

$$u_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}}$$

$$\mu_{\mathrm{R}} = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}} \quad \text{ with } \quad \mu_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}} \quad \mu_{t\bar{t}} = \sqrt{E_{T,t}E_{T,\bar{t}}} \qquad \qquad \mu_{\mathrm{F}} = \frac{H_{\mathrm{T}}}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b},j} E_{T,i}$$

NLO PDFs used throughout, both at LO and NLO: NNPDF_nlo_as_0118_nf_4 with α_s^{4}

The NLO QCD cross sections for $pp \to t\bar{t}b\bar{b}$ feature a large K-factor

K-factor

$$N_{b-jets \geq 0}: 2.06$$

$$N_{b-jets>1}: 1.92$$

$$N_{b-jets>2}: 1.79$$

Large $t\bar{t}b\bar{b}$ NLO K-factor

Input parameters, PDFs and scale choices

$$m_b = 4.75 \text{ GeV}$$

$$m_t = 172.5 \; {\rm GeV}$$

$$\mu_{\rm R} = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}}$$

$$\mu_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}}$$

The NLO QCD cross sections for $pp \to t\bar{t}b\bar{b}$ feature a large K-factor

$$\mu_{t\bar{t}} = \sqrt{E_{T,t}E_{T,\bar{t}}}$$

$$\mu_{\mathrm{R}} = \sqrt{\mu_{t\bar{t}}\mu_{b\bar{b}}} \quad \text{ with } \quad \mu_{b\bar{b}} = \sqrt{E_{T,b}E_{T,\bar{b}}} \quad \quad \mu_{t\bar{t}} = \sqrt{E_{T,t}E_{T,\bar{t}}} \qquad \qquad \mu_{\mathrm{F}} = \frac{H_{\mathrm{T}}}{2} = \frac{1}{2} \sum_{i=t,\bar{t},b,\bar{b},j} E_{T,i}$$

NLO PDFs used throughout, both at LO and NLO: NNPDF_nlo_as_0118_nf_4 with α_s^{4}

K-factor

$$N_{b-jets \ge 0}: 2.06$$

$$N_{b-jets \geq 1}: 1.92$$

$$N_{b-jets \geq 2}: 1.79$$

more realistic picture of perturbative convergence but much bigger K-factor wrt using LO α_S + PDFs for σ_{LO}

Hypotheses on origin of large K-factor

Hypothesis A: sizeable NLO real emission contribution

- \triangleright large mass gap in $t\bar{t}$ and $b\bar{b}$ systems: $m_b \ll m_t$
- ${\bf D}~g \to b\bar{b}$ splittings at relatively soft scales: $Q_{b\bar{b}} \ll m_t$
- **D** abudant NLO radiation with large $p_{T,j}: m_b < Q_{b\bar{b}} < p_{T,j} < m_t$
 - $\Rightarrow \sigma_{NLO}$ strongly enhanced by hard jet radiation interpreted as $t\bar{t}gg(g\to b\bar{b})$

it enters as a "new process" described at LO \Rightarrow potentially large NLO QCD corrections

A: mass effects on $pp \to t\bar{t}bb$ X-sections

Aim: try to understand if the large K-factor is related to $m_t \gg m_b$

Idea: study the NLO K-factor for different masses m_b, m_t : restrict the gap $m_b < p_{T,b} < Q_{b\bar{b}} < m_t$

masses [GeV]		$\sigma_{N_{b ext{-jets}} \geq 0}$ [pb]			$\sigma_{N_{b ext{-jets}}\geq 1}$ [pb]			$\sigma_{N_{b ext{-jets}} \geq 2}$ [pb]		
m_b	m_t	LO	NLO	NLO LO	LO	NLO	NLO LO	LO	NLO	NLO LO
4.75	172.5	12.94	26.61	2.06	3.955	7.593	1.92	0.374	0.669	1.79
28.62	28.62	321.1	642.4	2.0	165.3	317.7	1.92	34.61	63.42	1.83
28.62	172.5	0.999	1.911	1.9	0.752	1.400	1.86	0.245	0.437	1.78
172.5	172.5	0.013	0.023	1.82	0.013	0.023	1.81	$9.31\cdot 10^{-3}$	$1.67\cdot 10^{-2}$	1.79

Dynamic scales choice:

$$\mu_{\rm R} = \prod_{i=t,\bar{t},b,\bar{b}} E_{T,i}^{1/4}$$

$$\mu_{\rm F} = \frac{H_T}{2}$$

 \checkmark good shapes in distributions

Hypotheses on origin of large K-factor

Hypothesis B: non-optimal scales choices

 \triangleright an improved $\mu_{\rm B}$ choice might reduce the K-factor and also mitigate the NLOPS discrepancies

B: renormalisation scale choice

B: renormalisation scale dependence

Both at LO and NLO scale uncertainties are dominated by $\mu_{\rm R}$ variations.

Default choice of scale:
$$\mu_{\rm R}=\mu_{\rm R,def}\equiv\prod_{i=t,\bar{t},b,\bar{b}}E_{T,i}^{1/4}$$

Average value $<\mu_{\rm R.def}>: N_{b>0} \sim 73~{\rm GeV} \qquad N_{b>1} \sim 93~{\rm GeV} \qquad N_{b>2} \sim 124~{\rm GeV}$

 $\mu_{\rm R} = 2^{\xi} \left(E_{T,t} E_{T,\bar{t}} E_{T,b} E_{T,\bar{b}} \right)^{1/4}$

factor 2 variation: $\sim 27\%$ NLO uncertainty

similar K-factor for different b-jets multiplicities

a factor $\xi = 2 - 4$ reduction of $\mu_{\text{B,def}}$ brings

- $\mu_R/\xi \sim \sqrt{m_t m_b} = 28.6 \text{ GeV}$
- K-factor close to 1
- scale uncertainty $\leq 20\%$

it supports hypothesis B

 \triangleright Open questions in theory predictions for $t\bar{t}+b$ -jets production

ightharpoonup Large NLO K-factor in $pp \to t\bar{t}b\bar{b}$ and scale choices

$pp \to t\bar{t}b\bar{b}j$ at NLO QCD

First jet emission from matrix element \Rightarrow accurate benchmark for p_T of light jet radiation

Idea: look at $p_{T,j}$ spectrum in $t\bar{t}b\bar{b}$ and validate against NLO prediction from $t\bar{t}b\bar{b}j$

- clarify discrepancies in the MCs
- particularly important when hard QCD radiation is relevant
- validate consistency of reduced $\mu_{\rm R}$ for $t\bar{t}b\bar{b}$

We consider $pp \to t\bar{t}b\bar{b}j$ at 13 TeV centre of mass energy

- ▶ top quark stable, not decayed
- \triangleright jets reconstructed using anti- k_T algorithm as implemented in FastJet-3.2

$$\Delta R = 0.4, \quad p_T > 50 \text{ GeV}, \quad |\eta| < 2.5$$

 \triangleright input parameters and PDFs as in $t\bar{t}b\bar{b}$

All results shown have been obtained through SHERPA-2.2.4 + OpenLoops2

$pp \to t\bar{t}bbj$ K-factor and μ_R dependence

Improved choice of $\mu_{\mathbf{R}}$ for $t\bar{t}b\bar{b}j$ which takes in consideration the jet kinematics

$$\mu_{\rm R,def}^* \equiv (E_{T,t} E_{T,\bar{t}} E_{T,b} E_{T,\bar{b}} p_{T,j})^{1/5}$$

	σ_N	_{b-jets≥1} [pb]		$\sigma_{N_{b ext{-jots}} \geq 2}$ [pb]			
Process	LO	NLO	NLO LO	LO	NLO	NLO LO	
$t\bar{t}b\bar{b}$, $\mu_{R,def}$	$3.955^{+73\%}_{-39\%}$	$7.593^{+32\%}_{-27\%}$	1.92	$0.374^{+69\%}_{-38\%}$	$0.669^{+27\%}_{-25\%}$	1.79	
$t\bar{t}b\bar{b}j$, $\mu_{\mathrm{R,def}}^{*}$	$2.165^{+96\%}_{-45\%}$	$3.340^{+19\%}_{-27\%}$	1.54	$0.232^{+92\%}_{-45\%}$	$0.333^{+14\%}_{-24\%}$	1.44	

- ▶ For $pp \to t\bar{t}b\bar{b}j\ \sigma_{LO} \propto \alpha_s^5$ up to $\sim 90-95\%$ scale uncertainty
- $\begin{tabular}{l} $ \begin{tabular}{l} $ \begin$

envelope of 7 points variation of μ_F and μ_B

- ${\tt b}$ scale variation uncertainty significantly reduced at NLO
- ${\tt p}$ factor 2 variations of only $\mu_R \sim +13\%$ and -23% scale uncertainty
- ▶ K-factor smaller wrt $t\bar{t}b\bar{b}$ at central value of μ_R ⇒ no need to reduce $\mu_{\rm B,def}^*$

Distributions for $N_b \geq 2$ and $N_j \geq 1$

$$\mu_{\rm R,def}^* \equiv (E_{T,t} E_{T,\bar{t}} E_{T,b} E_{T,\bar{b}} p_{T,j})^{1/5}$$

- \triangleright inclusive K-factor ~ 1.4
- ▶ shape of distributions remarkably stable wrt NLO corrections
- \triangleright significant reduction of scale uncertainty at NLO \Rightarrow below 20% over all spectrum

Light-jet observables at NLO

$$\mu_{R,def}^* \equiv (E_{T,t}E_{T,\bar{t}}E_{T,\bar{b}}E_{T,\bar{b}}p_{T,\bar{j}})^{1/5}$$

$$p_T \text{ of } 1^{st} \text{ light-jet (itbb cuts)}$$

$$p_T \text{ of } 1^{st} \text{ light-jet (itbb cuts)}$$

$$10^{-4}$$

$$2.5$$

$$2$$

$$2$$

$$2.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

$$3.5$$

- \triangleright shape and normalisation of jet- p_T spectrum stable, in particular for $p_T \gtrsim 100 \text{ GeV}$
- ightharpoonup also other light-jet observables feature a stable NLO K-factor
- ightharpoonup factor 2 variations of μ_R and μ_F give $\sim 25\%$ scale uncertainty over the whole spectrum

$t\bar{t}b\bar{b}$ vs $t\bar{t}b\bar{b}j$ NLO predictions for $p_{T,j}$

NLO $t\bar{t}b\bar{b}j$ benchmark for $d\sigma/dp_{T,j}$: validation and tuning of $t\bar{t}b\bar{b}$ prediction

- i) envelope of 7-points NLO scale variation bands for $t\bar{t}b\bar{b}j$
- ii) compared against prediction from $t\bar{t}b\bar{b}$ with nominal and rescaled $\mu_{\rm R,def}$
 - \checkmark remarkably good shape agreement over all the p_T spectrum
 - \checkmark no significant shape corrections (independently of μ_R rescaling!)
 - ✓ rescaling $\mu_{\rm R,def}$ by 0.5 in $t\bar{t}b\bar{b}$ → ~ 15% agreement with NLO $t\bar{t}b\bar{b}j$
- \Rightarrow it motivates **reduction** of conventional $t\bar{t}b\bar{b}$ $\mu_{\rm R}$ **scale** by a factor 2 (or more)
- ⇒ no room for sizeable NLOPS shape distortions

Summary

- ${\bf \triangleright}\;$ crucial to understand sizeable discrepancies between NLOPS $t\bar{t}b\bar{b}$ MC on the market
 - most notably in the spectrum of extra light-jet radiation
 - related to large $t\bar{t}b\bar{b}$ NLO K-factor
- \triangleright We have shown that the scale dependence of $\sigma_{t\bar{t}b\bar{b}}$ and its interplay with the m_t/m_b mass gap support a reduced μ_R choice, which would:
 - \blacksquare yield a smaller K-factor and a smaller scale uncertainty
 - possibly mitigate NLOPS discrepancies
- ightharpoonup We have presented NLO predictions for $pp \to t\bar{t}b\bar{b}j$
 - first application of OpenLoops2 (with SHERPA)
 - lacktriangledown provides additional support for using a reduced μ_R choice in $pp \to t\bar{t}b\bar{b}$
 - should help reducing NLOPS uncertainties (by discarding less accurate MC predictions for light-jet spectrum)