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Aim of the challenge
• Find awesome techniques for sampling high 

dimensional parameter spaces that we have never used 
in particle astrophysics (with help from our machine 
learning experts)

•Develop realistic physics case studies, and evaluate 
each technique (with the help of our physics experts)

• Prepare a detailed summary that compares the 
techniques and presents our results



What to discuss in this meeting
• First we need to describe the typical physics problems 

that we want to solve to our machine learning experts

• Then we need to identify which techniques we want to 
try, and which case studies to apply them to

• Then we need to agree on a software framework for 
running fair comparisons between the techniques



A typical particle astrophysics problem

● colliders (LHC + previous)
● measurements of the magnetic moment of the muon
● electroweak precision tests
● dark matter direct detection experiments
● searches for antimatter in cosmic rays, nuclear cosmic ray ratios
● radio astronomy data
● effects of dark matter on reionisation, recombination and helioseismology
● relic density (CMB + other data)
● neutrino masses and mixings
● Indirect DM searches (e.g. FERMI-LAT, HESS, CTA, IceCube, etc)

We have a bunch of data from different experiments that might be sensitive to dark 
matter:



A typical particle astrophysics problem

● We may have a particular theory of dark matter (e.g. a particular Lagrangian in 
particle physics) 

● Which values of the parameters of that theory are preferred given the data?
● How probable or likely is the model relative to other models of dark matter?
● The likelihood of the model can be expressed as a composite likelihood 

assuming each set of measurements is independent:



A typical particle astrophysics problem

● We either want to map the shape of the multi-dimensional likelihood surface and 
use it to define confidence intervals (Frequentist), or use a prior and our 
likelihood to define a posterior, and map that (Bayesian)

● The likelihood is not known analytically, but can be mapped by sampling the 
function: for each parameter point, we can simulate the various experiments and 
compare the theoretical predictions to data to obtain a likelihood



Other problems
● These sorts of problems are ubiquitous in physics, e.g.: fitting parton density 

functions to experimental data to obtain the structure of the proton, extracting the 
neutrino sector parameters from accelerator and atmospheric data, extracting 
flavour physics parameters, …

● In each case, the parameters of the particle physics model are usually poorly 
constrained a priori, but there are additional nuisance parameters that are better-
constrained (e.g. experimental systematics, mass measurements of SM 
particles, velocity of dark matter in the frame of the Earth, etc)



Slow likelihood calculations
● A particular feature of interesting problems is that the calculation of each 

likelihood might be very slow

● For the GAMBIT Large Hadron Collider observables, we managed to get our 
simulations to run in 5s, but this takes massive parallelisation

● PDF fits require a calculation that takes ~20s, and there are over 100 nuisance 
parameters to scan over

● Cosmological calculations that require simulating the recombination history of 
the universe might need minutes per point



Not all problems are equally challenging
● The posterior is usually unimodal in cosmological applications (thus Markov 

Chain Monte Carlo techniques have remained popular), or in PDF fits

● The posterior is multimodal in, e.g., global fits of supersymmetric models, with 
very thin regions of interest in some cases (due to special conditions being 
needed to reproduce the correct dark matter relic density)

● Composite Higgs theories represent the biggest challenges I have yet seen 
(horrible thin sheets in the parameter space, which require delicate cancellations 
between sectors of the theory to get the right SM Higgs mass and quark 
masses)



GAMBIT sampling



ScannerBit algorithms
• ScannerBit contains custom code or interfaces for the following methods:

Random

Grid

Markov Chain Monte Carlo (MCMC)

Ensemble Monte Carlo

Nested Sampling

Differential evolution



Discussion (1)
1) What other physics problems do we want to solve that have been missed?
2) Which techniques are most scalable to O(100) of parameters? (or O(1000)?)
3) What techniques can be used to mitigate the effects of slow likelihood 
calculations (e.g. they require less samples, or they can approximate the 
likelihood)
4) What changes if we have lots of better-constrained parameters rather than lots 
of poorly constrained parameters?
5) Are there any techniques that can intelligently change the basis of the 
parameters we are scanning to make the problem simpler?
6) Anything else?



Discussion (2)
● Possible case studies could include:

1) Toy, analytic functions that increase in their awkwardness (e.g. n-D Gaussian, 
lots of n-D Gaussians, functions that have thin sheet-like behaviour in n-D, 
functions with very small regions of interest in addition to large regions of interest)

2) A realistic physics likelihood, with actual experimental likelihoods (e.g. Higgs 
portal likelihood in GAMBIT scanning paper)

3) Anything else?



Discussion (3)
● Possible software frameworks are:

1) We write our own interface to existing scanning implementations and physics 
likelihoods (plus code up any new scanners that we need)

2) We use GAMBIT which gives us most of that for free (at the cost of some 
overhead in learning how to add samplers to it)

3) Anything else?



Backup



Random and Grid scanners
• Random: just sample points randomly from the space within some box specified as a prior 

range on each parameter
• Grid: Scan along each axis (within some prior range)
• Not useful for serious applications: random sampling leads to biased inferences when 

applied to almost all problems
• Random and grid scanning both scale terribly with the number of dimensions in a problem

Source: Anders Kvellestad



Random and Grid scanners

Source: Anders Kvellestad



Markov Chain Monte Carlo (MCMC) methods
• MCMC methods have been used for decades in cosmology and particle physics problems
• A popular approach is the Metropolis-Hastings algorithm:
1) Start at a randomly drawn initial point θ

i

2) Select another point θ
trial

 at random using a proposal function q(θ
trial

 |θ
i
 )

3) The candidate point is accepted with the probability (p(θ ) = likelihood for flat prior on θ )

 
4) Set θ

i
 = θ

trial
 if θ

trial
 is accepted, else retain θ

i
, then repeat procedure



Markov Chain Monte Carlo (MCMC) methods
• These points form a Markov chain, which spends time in the parameter space in proportion 

to the target posterior PDF of the parameters (given the supplied likelihood)
• For sufficiently long chains, one obtains independent samples from the target distribution 

p(θ )
• To optimise efficiency, the proposal distribution q should match the (a priori unknown) true 

distribution
• GAMBIT includes an interface to the GreAT MCMC scanner that uses a multivariate 

Gaussian for q
• GreAT runs multiple chains, covariance matrix for chains is obtained from previous 

terminated chains (after thinning and removal of “burn-in” points)



Ensemble MCMC

• Standard MCMC is bad for high dimensional problems and/or multi-modal target functions
• Ensemble MCMC: run concurrent chains, each chain is individually advanced by 

contructing q from set of all points sampled by all chains
• GAMBIT includes the T-Walk ensemble MCMC method
• See ScannerBit paper for full details of how chains are advanced (depends on whether you 

are running the serial or parallelised version)



Nested sampling

• Nested sampling has been very popular in recent years, with many applications in particle 
physics, astronomy and cosmology

• It is much better at handling multimodal target functions than MCMC methods
• An efficient implementation is available in the public Multinest package, which GAMBIT 

makes use of



Nested sampling: a quick review of Bayesian inference

• Given a set of parameters Θ in a model H, plus some data D, Bayes' theorem gives:

• Denominator is a normalisation factor called the “Bayesian evidence”

• MCMC algorithms ignore Z (they give samples from the unnormalised posterior)

likelihood

Posterior probability 
distribution

prior



Nested sampling

• Nested sampling instead calculates Z directly by Monte Carlo integration

• Clever trick: define prior volume

• Can then write evidence integral as:

• Monotonically decreasing function of X 
• Draw N “live points” from prior, at each iteration replace the lowest likelihood 

samples with higher likelihood samples, repeat until prior volume has been 
traversed



Differential evolution: Diver
• Optimisation algorithm, good for multimodal posteriors in high dimensional spaces

• A simple explanation is as follows:

1) Start with a random selection of points in the parameter space (called “vectors”)

2) Mutate vectors by e.g. picking three random vectors and making: (V = “donor vector”)

3) Crossover the donor vectors and original vectors by making trial vectors U that have a 
random selection of components from the original vectors and the donor vectors

4) Select the vectors by computing the likelihood for the original vectors and their associated 
trial vectors, and choosing the highest likelihood vector for the next generation
● See ScannerBit paper for full details of GAMBIT implementation



Scanner comparisons

• GAMBIT allows the scanner to be swapped by changing one line in a yaml file

• This offers a unique test bed for comparison of scanning algorithms

• Have compared algorithms on a non-trivial physics example: scalar singlet DM

• Constraints from direct and indirect DM detection experiments, LHC Higgs invisible width 
searches, relic density upper bound plus theoretical upper bound on the Higgs-singlet 
coupling



Singlet DM



Scanner performance vs number of dimensions



Real time vs number of likelihood evaluations

● T-Walk and Multinest are less efficient (per likelihood 
evaluation) than GreAT and Diver for large dimensional 
problems

● There are several reasons (e.g. ellipsoidal decomposition in 
Multinest, chain advancement calculations in T-Walk, MPI 
bottlenecks, etc)



Posterior mapping: 15D scan using GreAT

• Yikes! Validates assertion that MCMC algorithms do not cope well with multimodal 
posteriors?



Posterior mapping: 15D scan using T-Walk

• The best scan here was the best posterior obtained, taking 9h in total

• Poorly converged scans find all modes, but don't get relative weight correct (and don't 
map the posterior smoothly)



Posterior mapping: 15D scan using Multinest

• Scans with too few live points or too high a tolerance do not find all modes 

• The best scan here took > 21h, and is not as smooth as the T-Walk results

• Multinest also erroneously smooths sharp features due to its ellipsoidal sampling method
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