Conductivity of quark-gluon matter in the external magnetic field

N. Astrakhantsev
in collaboration with
A. Kotov, C. Bonati, V. Braguta, M. D’Elia, F. Negro,
A. Nikolaev, F. Sanfilippo

Lattice 2019
June 20, 2019, Wuhan
Heavy ion collisions — large eB

In non-central heavy ion collisions very strong $|e\vec{B}| \sim 10m^2_\pi$ field may emerge.
Chiral magnetic effect (CME)

K. Fukushima, D. Kharzeev, H.J. Warringa. Chiral imbalance $N_R - N_L$ creates current in the direction of external \vec{B}:

$$\frac{d\rho_5}{dt} = \frac{e^2}{2\pi^2} \vec{E} \cdot \vec{B}$$

CME:

1. macroscopic effect of microscopic dynamics of QCD;
2. allows probing the topological structure of $SU(3)$ gauge field;
3. non-dissipative, topologically protected;
From ρ_5 to μ_5

Chirality-changing processes:

$$\frac{d\rho_5}{dt} = -\rho_5/\tau + \frac{e^2}{2\pi^2} \vec{E} \cdot \vec{B} \implies \rho_5 = \frac{e^2}{2\pi^2} \vec{E} \cdot \vec{B} \tau.$$

At small $\mu_5 \ll T$, $\mu_5 \ll \sqrt{eB}$, $\rho_5 = \chi(B,T)\mu_5$.

1. $T \gg \sqrt{eB}$, temperature dominates: $\chi(B,T) = T^2/3$,

2. $T \ll \sqrt{eB}$, 1st Landau level degeneracy:

$$\chi(B,T) = |eB|/2\pi^2$$

Linear response theory:

$$j^i_{\text{CME}} = \sigma^{ij}_{\text{CME}} E^j,$$

$$\sigma^{ij}_{\text{CME}} = \frac{e^4}{8\pi^4} \frac{\tau}{\chi(T,B)} B^i B^j.$$
CME observation: Dirac semimetals

▶ Experimental: Observation of the chiral magnetic effect in ZrTe$_5$, Nature physics (2016), Q. Li et al.

▶ HQMC: Lattice quantum Monte Carlo study of chiral magnetic effect in Dirac semimetals, Annals of Physics (2018), Boyda et al.

Figure: Left: σ_{CME} within HQMC lattice simulation, right: experiment with ZrTe$_5$.
Conductivity in external magnetic field

- $\vec{E} \parallel \vec{B}$
- \[\frac{d\rho_5}{dt} = \frac{e^2}{4\pi^2} (\vec{E}, \vec{B}) - \frac{\rho_5}{\tau}, \quad \tau \text{ — chirality-changing scattering time} \]
- $\rho_5 = \frac{e^2\tau}{4\pi^2} (\vec{E}, \vec{B})$,
- $\vec{J}_{\text{CME}} = \frac{e^2}{2\pi^2} \mu_5 \vec{B}$
- $\vec{J} = \sigma \vec{E} + \frac{e^2}{2\pi^2} \vec{B} \times \mu_5 \left(\rho_5 \sim \tau(\vec{E}, \vec{B}) \right)$
- Large magnetoconductivity σ_{\parallel}
- Classically $\delta\sigma_{\parallel} = 0$
- Observed in experiment (Weyl semimetals)
 H. Li et al., Nat. Comm. 7, 10301 (2016)

What happens in QCD?
Lattice details

- Stout smeared staggered $2 + 1$ fermions
- Physical pion m_π and strange m_s quark masses
- $T = 200, 250$ MeV
- Lattice sizes and steps:

<table>
<thead>
<tr>
<th>a, fm</th>
<th>L_s</th>
<th>N_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.988</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>0.0618</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>0.0493</td>
<td>64</td>
<td>16</td>
</tr>
</tbody>
</table>

- Integral Kubo equation

 \[C(\tau_i) = \int_0^\infty \frac{d\omega}{2\pi} K(\tau_i, \omega) \rho(\omega), \quad K(\tau_i, \omega) = \frac{\cosh \omega(\beta - \tau_i/2)}{\sinh \omega \beta/2} \omega. \]

- Conductivity:

 \[\frac{\sigma}{TC_{em}} = \frac{1}{6C_{em}} \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}. \]
The Backus-Gilbert method

- The method is designed for solving linear ill-defined problems with controllable regularization and systematic uncertainty.

- Define the (normalized) resolution function δ as the linear combination of adjustable coefficients $q(\bar{\omega})$:

 \[\tilde{\rho}(\bar{\omega}) = \int d\omega \delta(\bar{\omega}, \omega) \rho(\omega), \]

 \[\delta(\bar{\omega}, \omega) = \sum_i q_i(\bar{\omega}) K(\tau_i, \omega), \]

- Minimize the BG–functional:

 \[H(\rho) = \lambda A(\rho) + (1 - \lambda) B(\rho), \]

 \[A(\rho) = \int d\omega \delta(\bar{\omega}, \omega)(\omega - \bar{\omega})^2, \]

 \[B(\rho) = \text{Var}[\rho] = q^T C q. \]

The A part is the width of the resolution function (2nd moment to make q_i easy to find), $B(\rho)$ — make less dependent on data (regularize). The method provides $\rho(\omega)$ and $\delta(\bar{\omega}, \omega)$ as the output!
Resolution function

The width is of order $\leq 3.5T$ (not enough N_τ) to have the «delta-function». Is it possible that we underestimate the transport peak?

![Graph showing resolution function](image)

Probably not, characteristic transport peak width:

- $\sim 2T$ (B. Brandt et al., *Phys. Rev. D* 93, 054510 (2016));
- $\sim 4 - 5T$ (A. Amato et al., *Phys. Rev. Lett.* 111, 172001 (2013));
- $\sim 4T$ (H.-T. Ding et al., *Phys. Rev. D* 94, 034504 (2016))
Perturbative $\rho(\omega)$

$$\rho(\omega) \approx (B\omega)_{\text{small } \omega} \theta(\omega_0 - \omega) + (A\rho_{\text{UV}}(\omega))_{\text{large } \omega} \theta(\omega - \omega_0).$$

In Brandt et al. (2015) the $A \sim 1$ and $\omega_0 \sim 2$ GeV were obtained → the UV model works fine.

$$C(\tau) = A(\tau) + (-1)^\tau B(\tau).$$

$$\rho_{\text{UV}}(\omega) = C_{e/\omega} \frac{3}{4\pi^2} \omega^2 \tanh \left(\frac{\omega\beta}{4} \right)$$

$$C_e = \frac{1}{2}, \quad C_\omega = \frac{3}{2}.$$
Ultra violet reconstruction for $N_t = 96$

Figure: Left: Free case, right: interacting case.

$$(C_e + C_o)/2 \sim 1.$$
Results at $eB = 0$

At $T = 200$ MeV flat spectral function \rightarrow good analysis,

At $T = 250$ MeV B. report the rise of peak at zero \rightarrow possible underestimation.
Conductivity at nonzero magnetic field \(eB \neq 0 \)

Idea: consider difference \(C(t, eB) - C(t, eB = 0) \) \(\to \) avoid UV contamination, \(\delta(\tilde{\omega}, \omega) \) narrower.

The peak grows around \(\omega = 0 \), UV behavior is indeed small.
Conductivity at nonzero magnetic field $eB \neq 0$

- Linear growth observed as $eB \gg T^2$.
- The σ_\perp decay results from the Lorentz force acting on charged particles moving in the direction of $\vec{E} \perp \vec{B}$.
- Correction due to the intermediate region is hard to estimate.
- Decrease of the slope is in agreement with high-T behavior of $\tau/\chi(T, B)$.