News from bottomonium spectral functions in thermal QCD

Sam Offler, Swansea University
In collaboration with Gert Aarts, Seyong Kim, Chris Allton, Ben Jäger, Jonas Glesaaen, Maria Paola Lombardo, Sinead Ryan, and Jon-Ivar Skullerud
FASTSUM
Lattice QCD

- From thermal field theory

\[G(\tau_n) = \int_0^\infty K(\tau_n, \omega) \rho(\omega) \, d\omega \]

- Thermal Kernel plays the role of a distribution function.

\[K(\tau_n, \omega) = \frac{\cosh(\omega[\tau - \beta/2])}{\sinh(\omega\beta/2)} \]

- Spectral function contains all the interesting physics.
Lattice NRQCD

- An effective field model, where the Langrangian is in powers of $v_b = p/m$

- Cuts off relativistic modes for bottom quark

- Quark and anti-quarks fields decouple in this limit

- Time evolution is given by initial value problem.

- Performing the shift $\omega = 2M + \omega'$ allows us to re-write thermal Kernel as $K(\tau_n, \omega) = e^{-\omega'\tau}$
Lattice NRQCD

\[S(x + a_r e_r) = \left(1 - \frac{a_r H_0 |\tau + a_r|}{2k}\right)^k U_1(x) \left(1 - \frac{a_r H_0 |\tau|}{2k}\right)^k (1 - a_r \delta H) S(x) \]

\[H_0 = -\frac{\Delta^{(2)}}{2m_b}, \quad \text{with} \quad \Delta^{(2n)} = \sum_{i=1}^{3} (\nabla_i^+ \nabla_i^-)^n \quad (k = 1) \]

\[\delta H = -\frac{\left(\Delta^{(2)}\right)^2}{8m_b^2} + \frac{ig_b}{8m_b^2} (\nabla^\perp \cdot E - E \cdot \nabla^\perp) - \frac{g_b}{8m_b^2} \sigma \cdot (\nabla^\perp \times E - E \times \nabla^\perp) - \frac{g_b}{2m_b} \sigma \cdot B + \frac{a^2 \Delta^{(4)}}{24m_b} - \frac{a_r \left(\Delta^{(2)}\right)^2}{16km_b^2} \]

\(\delta H \) gives corrections to \(\mathcal{O}(v^4), \mathcal{O}(a^2_b), \mathcal{O}(a_r) \)

\(m_b \) set from spin averaged S-wave masses
Gen2 to Gen2L

Gen 2

\[M_\pi = 392 \text{ MeV} \]

\[\xi = 3.5 \]

<table>
<thead>
<tr>
<th>(N_\tau)</th>
<th>128*</th>
<th>40</th>
<th>36</th>
<th>32</th>
<th>28</th>
<th>24</th>
<th>20</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) [MeV]</td>
<td>44</td>
<td>141</td>
<td>156</td>
<td>176</td>
<td>201</td>
<td>235</td>
<td>281</td>
<td>352</td>
</tr>
<tr>
<td>(T/T_c)</td>
<td>0.24</td>
<td>0.76</td>
<td>0.84</td>
<td>0.95</td>
<td>1.09</td>
<td>1.27</td>
<td>1.52</td>
<td>1.90</td>
</tr>
<tr>
<td>(N_{\text{cfg}})</td>
<td>139</td>
<td>501</td>
<td>501</td>
<td>1000</td>
<td>1001</td>
<td>1001</td>
<td>1000</td>
<td>1001</td>
</tr>
</tbody>
</table>

Gen 2 ensembles, lattice size \(24^3 \times N_\tau \)

Gen 2L

\[M_\pi = 236 \text{ MeV} \]

\[\xi = 3.45 \]

<table>
<thead>
<tr>
<th>(N_\tau)</th>
<th>256*</th>
<th>128</th>
<th>64</th>
<th>56</th>
<th>48</th>
<th>40</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) [MeV]</td>
<td>23</td>
<td>47</td>
<td>94</td>
<td>107</td>
<td>125</td>
<td>150</td>
<td>167</td>
</tr>
<tr>
<td>(N_{\text{cfg}})</td>
<td>750</td>
<td>300</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(N_\tau)</td>
<td>32</td>
<td>28</td>
<td>24</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>(T) [MeV]</td>
<td>187</td>
<td>214</td>
<td>250</td>
<td>300</td>
<td>375</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>(N_{\text{cfg}})</td>
<td>500</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Gen 2L ensembles, lattice size \(32^3 \times N_\tau \)
Thermal modification of γ

- Consistent results for both generations
- Largest gap occurs corresponds to crossing T_c
- Very little enhancement
Effective mass of Υ

- The curve appear the same for all N_τ
- $a_\tau M_{\text{eff}} = 0.332$
- Can now define energy shift $M_0 = 7.463$ GeV

$$M_{\text{expt}} = a_\tau \Delta E + M_0$$

<table>
<thead>
<tr>
<th>$n^{S+1}L_J$</th>
<th>State</th>
<th>M_{expt} (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^1S_0</td>
<td>η</td>
<td>9398.0(3.2)</td>
</tr>
<tr>
<td>2^2S_0</td>
<td>η'</td>
<td>9990(4)</td>
</tr>
<tr>
<td>1^3S_1</td>
<td>Υ</td>
<td>9460.30(26)</td>
</tr>
<tr>
<td>2^2S_1</td>
<td>Υ'</td>
<td>10023.26(31)</td>
</tr>
<tr>
<td>1^1P_1</td>
<td>η_b</td>
<td>9899.3(1.0)</td>
</tr>
<tr>
<td>1^3P_0</td>
<td>χ_{b0}</td>
<td>9859.44(52)</td>
</tr>
<tr>
<td>1^3P_1</td>
<td>χ_{b1}</td>
<td>9892.78(40)</td>
</tr>
<tr>
<td>1^3P_2</td>
<td>χ_{b2}</td>
<td>9912.21(40)</td>
</tr>
</tbody>
</table>
Thermal modification of χ_b

- Largest gap occurs at T_c again
- 20% percent enhancement at high temp
- Larger thermal effects expected
Effective mass of Υ

- The curves spread for different N_τ
- Expected value is $a_\tau M_{\text{eff}} = 0.404$
The ill-posed problem

Recall

\[G(\tau_n) = \int_0^{\infty} K(\tau_n, \omega) \rho(\omega) \, d\omega \]

\(G(\tau_n) \sim O(10) \) whilst \(\rho(\omega) \) is in principle continuous, \(\sim O(1000) \).

Furthermore, small errors in \(G \) would blow up in \(\rho(\omega) \).

Can be treated as a 1D “image” reconstruction.

Requires numerical methods such as Maximum Entropy method (MEM) or Machine Learning.
MEM results

Strong agreement of ground-state energy between both generations.

Some melting of states at highest temperature
Machine Learning: Kernel Ridge Regression (KRR)

- Generalised form of linear regression

- Linear case: $y = \varphi(x)^T w \rightarrow$ KRR case: $Y = C(X_i, X_j)^T \alpha$

- C is our kernel function. Used to determine correlations between functions X_i and X_j.

- Parameter vector $w \rightarrow$ Parameter matrix α
KRR recipe

- Generate training data. (Spectral functions from realistic mock data. Correlators from Laplace transform)

- Generate kernel from training correlators.

\[
C(G_i, G_j) = \exp\left(-\frac{\sum_{n=1}^{N_T} (G_i(\tau_n) - G_j(\tau_n))^2}{\gamma^2} \right)
\]

- Minimise Cost function

\[
E[C(G_i, G_j), \alpha] = (Y - C^T \alpha)^2 - \lambda \alpha^T C^T \alpha
\]

\[
\alpha = (C + I\lambda)^{-1} Y
\]

- Can now make predictions using real data using \(Y = C(G_i, G_{real})^T \alpha \).
Kernel Methods results (Preliminary)

Mock data

$\rho(\omega)$ vs $a^{-1}\omega$

- **Target**
- **Prediction**

Y Correlation Function

$\rho(\omega)$ vs $a^{-1}\omega$
Summary

- We have seen thermal modification that is consistent with our previous generation of ensembles.
- Effective mass plots show consistent results with generation 2 (see arxiv 1402.6210)
- and expected value from experimental data
- MEM reconstruction for the Υ indicates agreement between generations
- KRR in its early stages

Thank you listening
Maximum Entropy Method (MEM)

Need to maximise \(P(F|D) \)

Bayes Theorem: \(P(F|D)P(D) = P(D|F)P(F) = P(D \cap F) \)

i.e. \(P(F|D) = \frac{P(D|F)P(F)}{P(D)} \)

But \(P(D|F) \sim e^{-\chi^2} \rightarrow \) minimising \(\chi^2 \neq \) maximising \(P(F|D) \)

\(\rightarrow \) Maximum Likelihood Method wrong??

\(P(F) \sim e^{\alpha S} \)

Shannon-Jaynes Entropy:
\[
S = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega)\ln\frac{\rho(\omega)}{m(\omega)} \right]
\]

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459