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1) Motivation 3) Implementation

We are interested in the EoS of
QCD at nonzero ug, and then we
have to deal with the infamous sign
problem.

The Taylor expansion around zero
1 g of the pressure is a tool that can
be used for this purpose. In partic-
ular, we are interested in the higher
order coefficients of the expansion.
To simplify the problem we intro-
duce up on the lattice using a lin-
ear prescription (Ref. [1]). In this
way we need much less operators,
and they can all constructed using
the building blocks:
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Figure 1: Preliminary higher or-

der net strangeness susceptibilities
using the traditional method (see
section below) for the evaluation of
traces. The higher the order, the
larger are the uncertainties. We
need new strategies to overcome
the bottlenecks of the traditional
method: we need to improve both
the efficiency and the precision of

We are implementing a BilLanc-
zos algorithm to find the eigen-
triplets (eigenvalues and right and
left eigenvectors) of the matrix A.
In order to do that we implemented
a routine that, starting from a
gauge configuration of a N2 x N,
lattice, creates an array of N, x
N, matrices M’, with N2 number
of elements, using HISQ fermions.
Then, using cuBLAS library we do
a batched inversion of these ma-
trices in parallel on GPU, in order
to obtain (M’)~1. The inverse re-
mains even-odd ordered and then
we can apply A to a vector. Starting
from there, we are implementing a
Thick Restarting version of the Bi-
Lanczos algorithm (Ref. [4]).
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Figure 2: Preliminary results for
the spectrum in the complex plane
of a simpler non-hermitian matrix
(here it is M), obtained using the
method explained in this section.
The numerical precision will be im-
proved with a fully reBiOrthogonal-
ization process during the BiLanc-
z0s, via a Modified Gram-Schmidt
procedure.

(1)  our method.

2) Methodology 4) Outlook

e Conventional Way:

The usual way to evaluate such an operator as (1) is to apply

iteratively the CG algorithm to invert the fermion matrix M and
manually apply M’ = %]‘lf for each power that appears in (1), as
it is done in Ref. [2].
To speed up this process it is possible to apply the deflation
method on the starting vector of each single inversion of the sym-
metric matrix M 7M. However, deflation needs to be repeated,
because each application of the M’ matrix mixes the low and
high modes of the fermionic matrix.

e New Way:
It we are able to evaluate the N, smallest eigenvalues \; of the
matrix A = M (M /du)” ", then we can write (1) as:

D, (2)

N,
D, = Z AR
1=0

Where D,(f) IS constructed using the operator A projected out of
the eigenspace that we have calculated.

In order to evaluate the eigenvalues \; of the non-hermitian ma-
trix A we are implementing a non-symmetric Lanczos Algorithm
(BiLanczos). An alternative method to evaluate the spectrum of
A was recently proposed in Ref. [3].

The main advantages of this technique are the following: in the large &
limit we can measure D, almost exactly using the eigenvalues that we
evaluated.

When the D,ER) IS not negligible, we can measure that part applying
a BiCG alogorithm only once, using the eigenvectors to speed up the
process via the deflation method.

In the linear 1 framework, though, the most general coefficient of order
2N of the pressure expansion, i.e. Cs5y, IS a sum of elements with the
following form:

Crim = ((Dg)")™ (3)

With £ +1+m = 2N.
Starting from D, we can, in principle, evaluate all the other coefficients

with [, m # 0 using unbiased estimator and increasing our accuracy of
Dy..

We will try to improve not only our measurement strategy as explained
in the Methodology section, but also our sampling and analysis strate-

gies:

At production level:

We need a huge amount of statistic to get a precise estimate of
the coefficients C5 in (3) with [ £ 0. That is because the tails
of the distribution of the gauge configurations with respect to the
operator D, become more and more important for higher [. The
idea Is to improve our gauge sampling strategy, enhancing the
tails contribution using Wang-Landau sampling.

At measurement and analysis level:

When we want to calculate the contribution to the coefficients
with m # 0 (see Eq. (3)), it becomes crucial to measure D, and
D! with very high precision, because the relative error scales
with a factor m.

There are two sources of uncertainty in these kinds of calcula-
tion: the gauge noise and the statistical noise. The latter is due to
the number of random vectors that we use to estimate the traces
(n). To reduce the gauge noise we can adopt the strategies men-
tioned above. To reduce the statistical one, we can again use
deflation as a method to reducing the variance of the random
variables:

O =nl Ay, (4)

Then, evaluating the mean value of © on the noisy vectors with a
smaller variance we will have a more precise result. In addition,
we will need less random sources and then the measurement will
be more efficient (see Ref. [5]).
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