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1.  Introduction



Sign problem

Typical examples:
① Finite density QCD
② Quantum Monte Carlo simulations of quantum statistical systems
③ Real time QM/QFT

Today, I would like to talk about the sign problem in:
② Quantum Monte Carlo simulations

of strongly correlated electron systems,
especially the Hubbard model away from half-filling

and show that a new algorithm “Tempered Lefschetz thimble method”
(TLTM) works well for this problem

The sign problem is one of the major obstacles
when performing numerical calculations in various fields of physics



Approaches to the sign problem
Two major approaches:

(1) Complex Langevin method (CLM)
(2) (Generalized) Lefschetz thimble method ((G)LTM)

Advantages/disadvantages:

(1) CLM

(2) (G)LTM

3( )
thimble is releva

           Multimodal problem if more than one thimble are relev

nt

  ant
O N∝

Pros:  No wrong convergence problem
          only a single 
Cons: Expensive

iff

( ):
Cons: "wrong convergence problem"

O N∝Pros   fast

[Parisi 1983]
[Cristoforetti et al. 2012
Alexandru et al. 2016]

Jacobian determinant + tempering

(wrong convergence de facto)

(2’) TLTM (Tempered Lefschetz thimble method) [MF-Umeda 2017,
MF-Matsumoto-Umeda 2019]

“facilitate transitions among thimbles
by tempering the system with the flow time”

~3 4( )
thimbles are relevant

O N∝
Pros:  Works well even when multi 
Cons: Expensive

Jacobian determinant

[Ambjørn-Yang 1985, Aarts et al. 2011,
Nagata-Nishimura-Shimasaki 2016]
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2.  Generalized Lefschetz thimble method (GLTM)



Generalized LTM (1/2)
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Generalized LTM (2/2)
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Multimodal problem in GLTM (1/2)
Flow time t needs to be large enough to solve the sign problem

However, this introduces a new problem “multimodal problem”

transitions among thimbles 
become indefinitely difficult
as  increasest

Dilemma between the sign problem and the multimodal problem

large

x

(for small )t (for large )t

2 /6 2( ) )( iS ezz π = − 



Multimodal problem in GLTM (2/2)
[Alexandru-Basar-Bedaque-Ridgway-Warrington 2016]

flow time (= 𝑇𝑇) small medium large
sign problem NG △ OK

multimodal problem OK △ NG

 s.t. it is large enough for the sign problem
but at the same time is not too large for the multimodal problem

TChoose a middle value of 

 is not obvious a prioriTHowever, the existence of such Even when it exists,
a very fine tuning 
will be needed

TLTM：

Implement a tempering method by using 
the flow time t as a tempering parameter

Proposal in GLTM:

no fine tuning needed!

[MF-Umeda 2017]  (cf. [Alexandru-Basar-Bedaque-Warrington 2017])

flow time (= 𝑇𝑇) small medium large
sign problem NG OK OK

multimodal problem OK OK OK



3.  Tempered Lefschetz thimble method (TLTM)

[MF-Matsumoto-Umeda 2019]
[MF-Umeda 2017]



Tempered LTM (1/3) [MF-Umeda 2017]
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Tempered LTM (1/3) [MF-Umeda 2017]
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Tempered LTM (2/3) [MF-Umeda 2017]

Algorithm of TLTM
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Tempered LTM (2/3) [MF-Umeda 2017]
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( )○

・ simulated tempering : enlarged system

・ parallel tempering
(replica exchange MCMC) : enlarged system

[Marinari-Parisi 1992]

[Swendsen-Wang 1986, Geyer 1991]
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Algorithm of TLTM
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Tempered LTM (2/3) [MF-Umeda 2017]
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Tempered LTM (3/3)
[MF-Umeda 2017, MF-Matsumoto-Umeda 2019]Important points in TLTM:

NO "tiny overlap problem" in TLTM

We can expect significant overlap between adjacent replicas!

t

0 0t =

1t

at

( )eff
T

A
S xw e−

0
0

( )
0

( )eff Re S xS x w ew e −− =

At T=
( )eff

ta
a

S xw e−

Distribution functions have peaks at the same positions 
for varying tempering parameter (which is  in our case)

x
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σ

The growth of computational cost due to the tempering
can be compensated by the increase of parallel processes

(1)

(2)



We actually can go further...
[MF-Matsumoto-Umeda 2019]
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We actually can go further...
[MF-Matsumoto-Umeda 2019]
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4.  Applying the TLTM to the Hubbard model
[MF-Matsumoto-Umeda 2019]



Hubbard model (1/2)
Hubbard model [Hubbard 1963]

modeling electrons in a solid
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Hubbard model (2/2)
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Quantum Monte Carlo
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We apply the Tempered LTM to this system
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Results for 2D lattice (1/4)
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Results for 2D lattice (2/4)

reweighting
large errors
due to the sign problem

deviate from exact values
due to multimodality
(but very small errors) agree with exact values

(small errors)
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Results for 2D lattice (2/4)

reweighting
large errors
due to the sign problem

deviate from exact values
due to multimodality
(but very small errors) agree with exact values

(small errors)
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Results for 2D lattice (3/4)

0.5 ( 5) 
(projected on a plane)

T µ= =Distribution of flowed configs at flow time 

w/ temp

[MF-Matsumoto-Umeda 2019]

w/o temp

distributed widely
over many thimbles

distributed over only
a small number of thimbles



Results for 2D lattice (4/4)
phase average

( )

( ) ( ( ))
( )

eff

eff

T

T

T

T

i

S

x

x

T S
i

e x
x

e

zθ

θ

 〈 〉
 〈 〉 =
 
 〈 〉 




It is generally dangerous to regard the phase average
as an index of the "resolution of the sign problem"

[MF-Matsumoto-Umeda 2019]

When only a single (or very few) thimble(s) is sampled,
the phase average can become larger than that in the correct sampling
due to the absence of phase mixtures among thimbles



Comment on the GLTM
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5Example: µ = large stat errors
(due to sign problem)

wrong value
(due to multimodality)

It is a hard task to find an intermediate flow time
that solves both sign problem and multimodality



5.  Conclusion and outlook



Conclusion and outlook
What we have done:

- We proposed the tempered Lefschetz thimble method (TLTM)
as a versatile method to solve the numerical sign problem

- We further developed it and found an algorithm to estimate expec. values
with a criterion ensuring global equilibrium and the sample size

- GLTM can easily give incorrect results or large ambiguities
- TLTM works for the Hubbard model and gives correct results,

avoiding both the sign and multimodal problems simultaneously
Outlook:

- Investigate the Hubbard model of larger temporal and spatial sizes
to understand the phase structure

- More generally, apply the TLTM to the following three typical subjects:
① Finite density QCD
② Quantum Monte Carlo (incl. the Hubbard model)
③ Real time QM/QFT

- Develop a more efficient algorithm with less computational cost

[MF-Matsumoto-Umeda, work in progress]

 should not depend on replica  due to Cauch(the key: y's th )em eora a

3~4( )][computational cost: O N
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Results for 2D lattice (4/5)
w/ temp

w/o temp

[MF-Matsumoto-Umeda 2019]

0a = 1a = 2a = 3a = 4a = 5a =

6a = 7a = 8a = 9a = 10a = 11a =

0a = 1a = 2a = 3a = 4a = 5a =

6a = 7a = 8a = 9a = 10a = 11a =

unimodal distribution

many peaks (may not be so obvious
because there are so many peaks
and the peaks are broadened by Jacobian)

[ , ]Histogram of 
at

θ π π∈ −



Results for 1D lattice (1/3)
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Results for 1D lattice (1/3)
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Results for 1D lattice (2/3)

peaked at several angles
because of sufficient transitions
among thimbles
(errors become a bit larger
due to the small size of sampling)

peaked at a single angle ~0.8 π
due to the trap to a single thimble
(errors become small
because the thimble is well sampled)

0.4
(projected on a plane)

T =Distribution of flowed configs at flow time 

w/o temp w/ temp

w/ tempw/o tempreweighting

distributing uniformly
from –π to +π

severe sign problem

Histogram of ImS(z)/π

/ImS π /ImS π /ImS π
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Results for 1D lattice (3/3)
phase average

When only a single (or very few) thimble(s) is sampled,
the phase average can become larger than the correct sampling
due to the absence of phase mixtures among thimbles
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It is generally dangerous to regard the phase average
as an index of the "resolution of the sign problem"
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