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Density of States approach

We define the generalized density of states

The partition function is recovered as a FT of the DoS

If the DoS in known the phase factor is accessible via a simpler one-dimensional
oscillatory integration

The DoS must be defined with
great precision over multiple
orders of magnitude



LLR – Linear Logarithmic Relaxation [1]

▪ Consider the restricted and reweighted expectation value

Idea: Choose a to achieve a uniform sampling in the imaginary action interval

The problem has been translated to solving a stochastic equation 
to find the appropriate reweighting factor

▪ Restrict the system to a small imaginary action interval of amplitude 

It’s easy to see that for a uniform sampling leads to

[1] K. Langfeld, B. Lucini and A. Rago, Phys. Rev. Lett. 109 (2012) 111601



Stochastic root finder

Robbins Monro[2] stochastic root finding

[2] Robbins, H.; Monro, The Annals of Mathematical Statistics 22

   

   

   

   

   

                              

       

       

       

       

       

   

  

Solving this equation for lhs = 0 gives an estimate
of the bias as

Knowing the scaling of all our simulation
parameters we can run bias-optimized simulations



LLR simulation results

From this results the DoS can be recovered as
Where pn is a polynomial fit of the reweighting parameters.



        
       

       

       

       

       

       

        

 
 

Phase factor integration



        
       

       

       

       

       

       

        

 
 

Phase factor integration

Low order polynomials
Small error
High Bias

High order polynomials
Small Bias
High errors

Sweet spot



Free energy difference vs chemical potential



Continuum/Thermodynamic limit
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General Observables in the Dos + LLR formalism

Using the definition of the DoS

We can write the expectation values as the ratio of two one-dimensional oscillatory 
integrals

Where we have defined a new function that describes the expectation value of the
observable restricted to configurations with fixed imaginary action.

This new quantity can be evaluated as the restricted and reweighted expectation value
defined in the LLR method, thus it is easily implemented in our simulations.



Relativistic Bose gas

Silver Blazing



Relativistic Bose Gas 

The density of the system is then given by the sum of these two contributions

The density of the relativistic Bose gas is defined as

Using the definition of the imaginary part of the action

The density can be recovered as



Relativistic Bose Gas 

Both contribution can be obtained with 
great precision, leading to a precise 
evaluation of the density, that shows 
again the Silver Blazing phenomenon.
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Thirring model – Worldline formulation[3]

[3] V. Ayyar, S. Chandrasekharan and J. Rantaharju, Phys. Rev. D 97 (2018) nr.5, [arXiv:1711.07898[hep-lat]]

monomer

dimer

The sign of a configuration is determined by the signs of the closed loops of links.

Idea: Use the number of negative sign loops as the quantity on which we build the 
density of states of the system. 

Staggered Dirac matrix



Thirring model – Preliminary results

Wang-Landau method results for the Thirring model with
on a 128x128 lattice



Conclusion and outlooks

• DoS + LLR: precise reconstruction of the DoS over hundreds orders of
magnitude

• Bias control and careful fitting: consistent evaluation of the Phase factor
also in the hard-sign problem region up to .

• General observables evaluation can be implemented in the framework
without too much troubles
• Study on bigger volumes is needed

• Preliminary results for the Thirring model show encouraging levels of
precision for the DoS rebuilding, a systematic study on the error for the
discrete DoS is still needed.



DoS Reconstruction

Piecewise approximation Polynomial fit approximation

Exponential error suppression Exponential error suppression
Smooth

                    

     

     

    

    

    

    

        

    

error in the integration in
each interval for the piecewise
approximation, this would
require an exponential number
of intervals to integrate the
phase factor as the sign problem
gets harder.



Overlap factor integration comparison

The fitted approach has a clear advantage, 
but

What polynomial order should we choose?

     

         

         

                    
    

    

    

    

    

    

    

    

    

  
  
 

   
 

        

        

         

              

                    

    

    

    

    

  
  
 

   
 

        

        

         

              

                                   
        

        

        

       

    

  
  
 

    
 



Optimal fitting order

Overfitting: if the polynomial order is too large we
risk to introduce unwanted oscillations in the DoS.
We compare the Derivative of the fit with the second
derivative of the DoS logarithm obtained via
independent simulations.

Underfitting: a analysis is enough to determine
if the functional form is adequate to describe the
data.

   

   

    

    

                    
      

      

      

      

      

     

    

   
  

 
 

          
     

     

     

     

     

     

     

        

 
 


