Euclidean correlation functions for transport coefficients under gradient flow

Hai-Tao Shu¹

in collaboration with

L. Altenkort¹, O. Kaczmarek^{1, 2}, L. Mazur¹ ¹Bielefeld University, ² Central China Normal University

Lattice 2019 Wuhan, China, 16-22 June, 2019

- Motivation
- Transport coefficients from euclidean correlation functions
- Application of gradient flow on the lattice as noise reduction technique
- Correlation functions on the lattice
- Summary & Outlook

Motivation

- **UNIVERSITÄT BIELEFELD** Fakultät für Physik
- Transport coefficients as crucial inputs for hydro/transport models to describe the experimental data

[M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008)]

[PHENIX, PRL98(2007)172301]

Transport coefficients from the lattice

Fakultät für Physik

 $G_X(\tau, \vec{p}) = \int d^3 \vec{x} \ e^{-i\vec{p}\cdot\vec{x}} \langle \hat{\mathcal{O}}_X(\tau, \vec{x}) \hat{\mathcal{O}}_X(0, \vec{0}) \rangle = \int \frac{d\omega}{2\pi} \frac{\cosh(\omega(\tau T - 1/2)/T)}{\sinh(\omega/2T)} \rho_X(\omega, \vec{p}, T)$

spectral reconstruction: see Anna-Lena Kruse & Hiroshi Ohno's talk

HQ momentum diffusion coefficient:

$$\kappa = \lim_{\omega \to 0} \frac{2T\rho_{ii}(\omega)}{\omega} \qquad \iff \quad \hat{\mathcal{O}}_X(x) = E_i(x)$$

Shear viscosity: $\eta(T) = \pi \lim_{\omega \to 0} \lim_{\mathbf{p} \to 0} \frac{\rho^{12,12}(\omega, \mathbf{p}, T)}{2\omega} \qquad \iff \quad \hat{\mathcal{O}}_X(x) = T_{12}(x)$

Bulk viscosity:
$$\zeta(T) = \frac{\pi}{18} \sum_{i,j=1}^{3} \lim_{\omega \to 0} \lim_{\mathbf{p} \to 0} \frac{\rho^{ii,jj}(\omega, \mathbf{p}, T)}{\omega} \quad \iff \quad \hat{\mathcal{O}}_X(x) = T_{ii}(x)$$

For correlators of topological charge, see Lukas Mazur's talk

Color-electric correlators

Fakultät für Physik

a

RIFI FFFI D

UNIVERSITAT

Large-mass limit drives current-current correlator to be a "color-electric" correlator (in pure gauge) along a Polyakov loop [S. Caron-Huot et al., JHEP 0904 (2009) 053]

attice calculations of color-electric correlators:

$$\delta m = \frac{3}{2}a_0^2\gamma, \ \gamma = -\int_0^\beta d\tau \ G_{EE}(\tau)$$

[A M. Eller, J. Ghiglieri, G. Moore, PRD.99.094042] see A M. Eller's poster

Multi-level [Luscher & Weisz, JHEP09 (2001)010]
 Link-integration [Forcrand & Roiesnel, PLB151(1985)77]

However, only works for gluonic fields Need Gradient Flow for dynamic quarks, but start from gauge field first ...

[Luscher & Weisz, JHEP1102(2011)051] [Narayanan & Neuberger, JHEP0603(2006)064]

Gradient flow

Gradient flow as a "diffusion" equation along extra dimension "t"

 $\partial_t B(x,t) = D_{\nu} G_{\nu\mu}(x,t)$ with initial condition: $B_{\nu}(x,t)|_{t=0} = A_{\nu}(x)$

Small flow time expansion

$$\mathcal{O}(x,t)$$
 $\xrightarrow{t \to 0} \sum_{k} c_k(t) \mathcal{O}_k^R(x)$

Applications:

running coupling / topo. charge / scale setting defining operators / noise reduction / ...

Example: construction of $T\mu v$

$$T^R_{\mu\nu}(x) = \lim_{t \to 0} \left(\frac{U_{\mu\nu}(t,x)}{\alpha_U(t)} + \frac{\delta_{\mu\nu}}{4\alpha_E(t)} E(t,x)_{subt} \right)$$

UNIVERSITAT

$$\begin{cases} E(t,x) = \frac{1}{4}G^a_{\rho\sigma}(x,t)G^a_{\rho\sigma}(x,t) \\ U_{\mu\nu}(x,t) = G^a_{\mu\rho}(x,t)G^a_{\nu\rho}(x,t) - \delta_{\mu\nu}E(t,x) \end{cases}$$

Lattice set-up

Fakultät für Physik

BIFLFFFLD

UNIVERSITÄT

β	$a[\text{fm}](a^{-1}[\text{GeV}])$	N_{σ}	N_{τ}	T/T_c	#confs.	#meas.
6.8736	0.026~(7.496)	64	16	1.50	10000	10000
			64	0.00	10000	_
7.0350	0.022 (9.119)	80	20	1.50	10000	10000
7.1920	0.018~(11.19)	96	16	2.25	10000	_
			24	1.50	10000	3000
			28	1.29	10000	-
			32	1.13	10000	-
			48	0.75	10000	-
7.5440	$0.\overline{012}\ (17.0\overline{1})$	144	36	1.50	-	_
7.7930	$0.009\ (22.78)$	192	48	1.50	-	-

currently correlators are measured at $1.5T_c$ on 3 different quenched lattices (and beta)

GEE under flow (64³x16)

UNIVERSITÄT BIELEFELD

Fakultät für Physik

Gradient flow reduces the error
How much can we flow ?

Flow time limit for GEE (64³x16)

Fakultät für Physik

BIELEFELD

UNIVERSITÄT

LO perturbative limit for flow time:

 $\tilde{\tau}_F < 0.1136(\tau T)^2$

- Good signal within flow limit
- ✤ Future steps: continuum limit & $t \rightarrow 0$ limit

Gradient Flow v.s. Multi-Level (1)

Fakultät für Physik

Almost continuum limit in ML

Gradient Flow v.s. Multi-Level (2)

- Lattice effects in GF can be seen
- Data points under flow move in "correct" way
- Continuum-extrapolation at fixed flow time is anticipated

GTT under flow (64³x16)

with one-loop Suzuki coefficients [Hiroshi Suzuki, PTEP 2013 (2013) 083B03]

- Flow effects can also be seen in energy-momentum tensor correlators
- Need more statistics in shear channel
- Understand the behavior of correlators within & beyond the flow time limit

UNIVERSITÄT

BIFL FFFL D

- G_{EE} and G_{TT} are measured at $1.5T_c$ on 3 different lattices under GF
- Good signal for G_{EE} under GF, comparable to those from ML algorithm
- Need more statistics for G_{TT}
- Confident in GF for dynamic quarks
- * Move on to finer & larger lattices and different temperatures
- * Perform continuum & $t \rightarrow 0$ extrapolation for the correlators
- * Extract spectral functions from correlators and estimate η , ζ , κ (and γ) accordingly (consider perturbative constraints)
- * Extend to full QCD using large and fine 2+1-flavor HISQ lattices

Thanks!

Backup: perturbative flow time limit

[S. Eller and G. Moore, PRD97 (2018) 11, 114507]